
Microscopy Network Basel

Image processing course
Linear shift-invariant systems

Aaron Ponti

v1.2

SIGNALS

� A function containing information about
some phenomenon of interest.

� A quantity exhibiting variation in time
and/or space.

Signals

Time (s)

f(t)

A/D

Analog and digital signals (1D)

Acoustic signal
(continuous)

Electric signal
(continuous)

Analog-to-digital converter

…0110101011…
(discrete)

1D

D/A

Analog and digital signals (1D)

Digital-to-analog converter

Electric signal
(continuous)

Acoustic signal
(continuous)

Transducer

…0110101011…
(discrete)

1D

A/D conversion

� Analog-to-digital conversion is a 2-
step process:

◦ Sampling: converts a continuous signal
into a discrete one

◦ Quantization: discretizes the amplitude
of the signal.

Sampling

Dt

The continuous signal (blue) is measured at discrete time intervals (red dots).

“Real” value

“Recorded” value

The continuous signal (blue) at discrete time intervals is approximated to a
fixed number of discrete values (magenta crosses).

Quantization

Quantization error

Example: CD sound quality
44.1 kHz, 16bit, stereo

2 channels, each with:

Sampling rate
44.1 kHz → DT = 1/rate ≈ 2.3∙10-5 s

Quantization levels
16 bit → 216 = 65536 levels

Compact disc

Analog and digital signals (2D)

Digital camera Digital monitor

Electromagnetic waves
(continuous)

(Analog) CRT monitorAnalog camera (with film)

EM waves
(continuous)

2D

Sampling and quantization (2D)

In this example, signal intensity is approximated by 256 discrete values (8 bits).

Dx

Digital image
Analog signal Sampling Quantization

Sampling è spatial resolution

Quantization è grayscale resolution

The grayscale resolution of an image is expressed as its bit depth.

The maximum number of brightness (i.e. gray) levels in an n-bit image is 2n.

Original
dynamic

range

Quantization è grayscale resolution

Resolution summary

LSI SYSTEMS

Discrete signal (notation)

n1

n2

1 2 3 …

1
2
3

…

(0,0)… …

…

…

x(n1, n2)

Systems

T[·]x(n1, n2) y(n1, n2) = T[x(n1, n2)]

Input Output

Examples:

y(n1, n2) = 255 - x(n1, n2)

y(n1, n2) = median(N(x(n1, n2)))

A neighborhood of a given position (pixel) x(n1, n2)

Systems

T[·]x(n1, n2) y(n1, n2) = T[x(n1, n2)]

T[] can be any sort of transformation (system) of the input signal x(n1, n2).

We will now consider a family of systems with following properties:

Input Output

• Linearity

• Spatial (shift) invariance

Linear systems

T[a1x1(n1, n2) + a2x2(n1, n2)] = a1T[x1(n1, n2)] + a2T[x2(n1, n2)]

If

then T[] is linear.

The transformed version of a weighted sum of signals is the same as the
weighted sum of the signals transformed individually.

(Alternatively, a linear system can be decomposed into constituents that
are processed independently, and the result combined in the end.)

Shift-invariant systems

T[x(n1 – k1, n2 – k2)] = y(n1 – k1, n2 – k2)

If

then T[] is shift-invariant.

Given:

T[x(n1, n2)] = y(n1, n2)

If the input is shifted by a given amount, the output will be shifted by the same amount.

(Or, the location of the origin of the coordinate system is irrelevant.)

Discrete Unit Impulse

n1

n2

1

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

… …

…

…

Linear Shift-Invariant systems

LSId(n1, n2) h(n1, n2)

Impulse response
of the LSI system

Unit impulse

Linear Shift-Invariant systems

LSId(n1, n2) h(n1, n2)

Impulse response
of the LSI system

h(n1, n2)x(n1, n2) y(n1, n2)

Unit impulse

The system response to the unit impulse is all we need to fully describe the LSI system.

Convolution

h(n1, n2)x(n1, n2) y(n1, n2)

LSI systems can be described and efficiently implemented
by the mathematical operation of convolution.

Convolution (1D example)

5 * 6 = [30][1 2 3 4 5]
[6 4 2]

6 * 4 + 5 * 4 = [44 30][1 2 3 4 5]
[6 4 2]

3 * 6 + 4 * 4 + 5 * 2 = [44 44 30][1 2 3 4 5]
[6 4 2]

2 * 6 + 3 * 4 + 4 * 2 = [32 44 44 30][1 2 3 4 5]
[6 4 2]

1 * 6 + 2 * 4 + 3 * 2 = [20 32 44 44 30][1 2 3 4 5]
[6 4 2]

1 * 4 + 2 * 2 = [8 20 32 44 44 30][1 2 3 4 5]
[6 4 2]

1 * 2 = [2 8 20 32 44 44 30][1 2 3 4 5]
[6 4 2]

y(n) = [2 8 20 32 44 44 30]Full convolution:

x = [1 2 3 4 5]

h = [2 4 6]

Linear Shift-Invariant systems

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

LSI

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 1 0 0

0 0 0 0 0

Impulse signal Impulse response function

d(n1, n2) h(n1, n2)

Linear Shift-Invariant systems

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

LSI

x(n1, n2) y(n1, n2)

Linear Shift-Invariant systems

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 1 2 2 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

LSI

The output signal is formed as a linear combination (i.e. weighted sum)
of spatially-shifted1 impulse response functions.

1 Or time-shifted in 1D.

x(n1, n2) y(n1, n2)

Spatial filtering through convolution

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

919191
919191
919191

h

3x3 average filter
(poor) Low-pass filter

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

0.07510.12380.0751
0.12380.20420.1238
0.07510.12380.0751

h

3x3 Gaussian filter
(better) Low-pass filter

ú
ú
ú

û

ù

ê
ê
ê

ë

é

--

=
111
181
111

h

High-pass filter

Examples of convolution filters

x(n1, n2)

“kernels” h

Spatial filtering through convolution

Examples of convolution filters

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

121/1...121/1121/1121/1
...............
121/1...121/1121/1121/1
121/1...121/1121/1121/1
121/1...121/1121/1121/1

h

11x11 average filter

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

101-
101-
101-

h

Prewitt
Vertical edge

ú
ú
ú

û

ù

ê
ê
ê

ë

é ---
=

111
000
111

h

Prewitt
Horizontal edge

“kernels” h

x(n1, n2)

Larger “support” of the filter

Spatial filtering

Low-pass filter
Gaussian kernel

Band-pass filter
Difference of Gaussians kernel

High-pass filter
1 - Gaussian kernel

The convolution of a signal in the spatial domain has very specific effects
on the frequency content of the signal.

Exponential sequences

Euler’s formula

x(n1, n2) y(n1, n2) ?
LSI

h(n1, n2)

What happens if we pass exponential sequences through an LSI system?

Periodic with period 2p.

Polar representation Cartesian representation

Frequency response of a system

x(n1, n2) y(n1, n2) ?
LSI

h(n1, n2)

We calculate the convolution of x(n1, n2) with the impulse response h(n1, n2):

The signal goes through untouched!

Frequency response of a system

• is the frequency response of the system
• tells us how the LSI system reacted to the input frequencies
• is the Fourier transform of the impulse response h(n1,n2)
• has a magnitude and a phase

:

Exponential sequences

LSI

Frequencies are left untouched

Amplitude change Linear phase shift

Exponential sequences are building blocks of any signal and so
called eigen-functions of LSI systems.

LSI systems cannot produce frequencies that are not in the input.

… and any signal

(Joseph Fourier, 1768 – 1830)

Continuous Fourier Transform

Fourier transform

Inverse Fourier transform

• The Fourier transform is periodic with period 2p in the w1 and w2 directions
(since the exponential sequences have the same periodicity).

• We consider the continuous Fourier transform of a discrete signal.
• The Fourier transform maps a signal to its frequency representation.

Discrete signal Continuous variables

One period Important implications when sampling the signal!

Frequency response: example

n1

n2

h(0, 0) h(1, 0)h(-1, 0)

h(0, 1)

h(0, -1)

1/3

1/3 1/6 1/3

1/3

h(n1, n2)

h(n1, n2)

Given an LSI system and its impulse response h(n1, n2), we want to calculate
its (continuous) frequency response H(w1, w2), i.e. the Fourier Transform of
h(n1, n2).

Frequency response: example

Continuous and periodic.

Frequency response: example

Magnitude of the frequency response
of h(n1, n2) over one period (–p : p)

H(0, 0) = 1
H(-p, p/2) = 0
H(p, p/2) = 0

Low-pass filter

Frequency response: example 2

High-pass filter

Frequency responseImpulse response

Convolution theorem
The convolution theorem describes the input – output relationships of an LSI
system in the frequency domain.

FT IFT FT IFT FT IFT

Multiplication in the frequency domain
Reverse is also true.

Sampling

Analog, continuous signal
(band-limited)

Ω1

Ω2

FT

Region of support of the
frequency response

Xa(Ω1, Ω2)
Under which conditions can we reconstruct
a continuous, band-limited signal from its
discrete representation with no loss of
information?

An alternative view: sampling can be modelled in direct space with a multiplication of the signal with a train of delta
functions. The convolution theorem tells us that this corresponds to a convolution of the Fourier Transform of the signal
with the Fourier Transform of the impulse train.

Sampling

Ω1

Ω2

FT

Sampling on
a regular grid

T1 (sampling period)

T2

XS(Ω1T1, Ω2T2)

The spectrum of the analog signal Xa is periodically extended with periods 2p/Ti.
T1 and T2 define how far apart the replica of the spectrum will be.

Periodic expansion

wi = ΩiTi

w1 w2
Spectrum of the analog signal

(sampling frequency)

We only store the values at the
intersection points of the grid.

Xa

Critical sampling

Ω1

Ω2

FT

Sampling on
a regular grid

T1,c

T2,c

XS(Ω1T1, Ω2T2)

This (base) band contains the spectrum of the analog signal with no loss of information.

Xa

Oversampling

Ω1

Ω2

FT

Sampling on
a regular grid

XS(Ω1T1, Ω2T2)

T1 < T1,c
T2 < T2,c

Xa

Undersampling

Ω1

Ω2

FT

Sampling on
a regular grid

XS(Ω1T1, Ω2T2)

Aliased spectrum of the analog signal

T1 > T1,c
T2 > T2,c

Aliasing

Xa

Aliasing: example

Properly sampled Undersampled and aliased

Nyquist sampling theorem

Ω1

Ω2

XA(Ω1, Ω2)

To reconstruct the analog image, extract (multiply)
the digital spectrum with a low-pass filter:

Constant (with gain T1T2) on the support area.A 2D sync function in spatial domain.

Sampling frequency

Xa

Xa

max frequency in n1 direction

What should the
optimal sampling

period Ti be?

beginning of
first replica

Nyquist critical sampling

Discrete Fourier Transform (DFT)
• The continuous Fourier Transform of a discrete signal is not computable

• continuous (i.e. infinitely many) frequencies w1 and w2.

• One period in the frequency domain corresponds to one period of the
spatial domain: this mapping is the Discrete Fourier Transform (DFT).

Fourier series
representations

• Sampling in the frequency domain results in periodic extension of the
sampled spatial signal.

• A sampled version of one period of the continuous Fourier transform is all
is needed to reconstruct the analog signal.

Discrete Fourier Transform (DFT)
Continuous

N1 samples N2 samples

Sampling in frequency space. We keep only one period.

DFT pair

Most properties of the continuous FT apply to the DFT with one exception: linear shifts become
circular shifts (“wrap around”).

Fast Fourier Transforms (FFTs)

DFT:

For each (k1, k2): N1 * N2 multiplications;

For N1 = N2 = N, a full DFT requires N4 multiplications.

Fast Fourier Transforms (FFTs) are a family of algorithms that
impressively speed up calculation of the DFT.

Best runtime is in the order:

aN2log2N
with a < 1.

For a 1024 x 1024
image, the FFT is
approximately 105 times
faster that the DFT.

DFT centered

DFT

DFT centered

(0, 0)

DFT examples
Increasing frequency

Increasing
frequency

Low-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

FFT

IFFT

High-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

FFT

IFFT

Band-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

FFT

IFFT

Removing unwanted frequencies

Circular convolution
linear convolution

DFT DFT

IDFT circular convolution

The circular convolution is infinite-length and periodic whereas the linear
convolution is finite length, therefore a trick is needed to calculate linear
convolution in frequency domain.

Circular convolution

vs.

Result of
linear convolution

Aliased result of
linear convolution

Appropriate supportInappropriate support → aliasing

0

0

L1=N1+M1-1

Linear convolution in frequency
domain (how to)

n1

n2

N1

N2

n1

n2

M1

M2

n1

n2

L2=N2+M2-1

x(n1, n2) h(n1, n2)

• Pad x(n1, n2) and h(n1, n2) with zeros to size (N1+M1-1 x N2+M2-1)
• Calculate the FFT (DFT) of both
• Multiply the transforms together
• Calculate the inverse FFT of the result → same result as linear convolution
• Carve out the result from the center of the result

(M2 – 1) / 2)

A B

C D

A B

C D

0

L1=N1+M1-1

Linear convolution in frequency
domain (how to)

n1

n2

N1

N2

n1

n2

M1

M2

n1

n2

L2=N2+M2-1

x(n1, n2) h(n1, n2)
A B

C D

A B

C D

0

40 0 05 6

70 0 08 91 2 3

4 5 6

7 8 9

0 0 0 0 0 0

0 0 0 0 0 0

12 3 0 0 0

Linear convolution in frequency
domain (how to)

Convolution in spatial domain

>> x = [1 2 3 4 5 4 3 2 1]; % N = 9
>> h = [1 2 3 2 1]; % M = 5
>> y = conv(x, h)
y =

1 4 10 18 27 34 37 34 27 18 10 4 1 % N + M – 1 = 13

>> y = conv(x, h, 'same')
y =

10 18 27 34 37 34 27 18 10 % N (the borders have size = (M – 1) / 2)

Convolution in Frequency domain with inappropriate support → aliasing

>> ifft(fft([1 2 3 4 5 4 3 2 1]) .* fft([1 2 3 2 1 0 0 0 0])) % They need to have at least the same size
y =

19 14 14 19 27 34 37 34 27

Convolution in Frequency domain with appropriate support

% y = ifft(fft(x, numel(x) + numel(h) - 1) .* fft(h, numel(x) + numel(h) - 1))
% y = cconv(x, h)

>> ifft(fft([1 2 3 4 5 4 3 2 1 0 0 0 0]) .* fft([1 2 3 2 1 0 0 0 0 0 0 0 0]))
y =

1.00 4.00 10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 4.00 1.00

>> ifft(fft([1 2 3 4 5 4 3 2 1 0 0 0 0]) .* fft([3 2 1 0 0 0 0 0 0 0 0 1 2]))
y =

10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 4.00 1.00 1.00 4.00

The “border” is all on one side.

14 5 0 0 23 0

