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> SIGNALS



Signals

* A function containing information about
some phenomenon of interest.

f(t)

=
Time (s)

* A quantity exhibiting variation in time
and/or space.



Analog and digital signals (1D)

Analog-to-digital converter

TN

Acoustic signal Electric signal ...0110101011...

(continuous) (continuous) (discrete)

1D



Analog and digital signals (1D)

Digital-to-analog converter

Transducer

...0110101011... Electric signal Acoustic signal
(discrete) (continuous) (continuous)

1D



A/D conversion

» Analog-to-digital conversion is a 2-
step process.

- Sampling: converts a continuous signal
into a discrete one

- Quantization: discretizes the amplitude
of the signal.



Sampling

Time sampling with interval A T
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The continuous signal (blue) is measured at discrete time intervals (red dots).



Quantization

3 Amplitude quantization

0751 Real” value

25}

“Recorded” value

Amplitude

| Quantization erro

| | | VAN

Time (s)

The continuous signal (blue) at discrete time intervals is approximated to a
fixed number of discrete values (magenta crosses).




Example: CD sound quality
44.1 kHz, |1 6bit, stereo

2 channels, each with:

Sampling rate
44 1 kHz — AT = 1/rate = 2.3-10° s

Quantization levels
16 bit — 216 = 65536 levels

Compact disc



Analog and digital signals (2D)

Electromagnetic waves
(continuous)

Analog camera (with film) (Analog) CRT monitor

TN AR
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| EM waves
(continuous)

Digital camera Digital monitor

2D



Sampling and quantization (2D)

Digital image

Analog signal Sampling Quantization
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In this example, signal intensity is approximated by 256 discrete values (8 bits).



Sampling =» spatial resolution




Quantization =2 grayscale resolution

Bit Depth and Gray Levels in Digital Images
2 Bit 4 Bit 6 Bit 7 Bit 8 Bit 10 Bit

o | |
Original =z J J _\J

dynamic
range

—
16 64 128 266 1,024
Gray Levels -
(Bit Depth)

The grayscale resolution of an image is expressed as its bit depth.

The maximum number of brightness (i.e. gray) levels in an n-bit image is 2".



Quantization =2 grayscale resolution
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8 levels (3 bit) 2 levels (1 bit)



Resolution summary

- |ncreasing Spatial Resolution—
Digital Camera System
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> LSI SYSTEMS



Discrete signal (notation)

x(nq, ny)




Systems

Input Output
x(nq, Ny) > y(ny, np) = T[x(ny, ny)]
Examples:

y(nq, ng) =255 - x(n4, ny)

y(ny4, ny) = median(N(x(n4, ny)))

T

A neighborhood of a given position (pixel) x(ny, n,)



Systems

Input Output

l l

x(nq, Ny) > y(ny, np) = T[x(ny, ny)]

T[] can be any sort of transformation (system) of the input signal x(n,, n,).

We will now consider a family of systems with following properties:
* Linearity

« Spatial (shift) invariance



Linear systems

If

T[a x4(ny, Ny) + axXy(Nq, Ny)] = a4T[x4(N4, Ny)] + a;T[Xy(Ny, Ny)]

then TJ] is linear.

The transformed version of a weighted sum of signals is the same as the
weighted sum of the signals transformed individually.

(Alternatively, a linear system can be decomposed into constituents that
are processed independently, and the result combined in the end.)



Shift-invariant systems

Given:

T[x(ny, ny)] = y(ny, ny)

If

T[x(nq —ky, np = ko)l = y(ny — ky, n; —ky)

then TI[] is shift-invariant.

If the input is shifted by a given amount, the output will be shifted by the same amount.

(Or, the location of the origin of the coordinate system is irrelevant.)



Discrete Unit Impulse

I, forni =nyg =0

5(%1,%2) — {

0, otherwise

6 (7?,1, ng)

O

v
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O[O |O|O | O
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OO0 |O | O

OO0 |O | O




Linear Shift-Invariant systems

Unit impulse Impulse response
l of the LS| system

|
o(ny, ny) —n > h(ny, ny)




Linear Shift-Invariant systems

 SSE
Unit impulse N @}LL Impulse response
l 7 of the LSI system
5(”1’ nZ) » h(n1! n2)
x(ny, ny) > y(ng, ny)

The system response to the unit impulse is all we need to fully describe the LS| system.




Convolution

x(n4, Ny) > y(ny, ny)

LS| systems can be described and efficiently implemented
by the mathematical operation of convolution.

[ y(ni,nz) = x(ny,nz) ® h(ng,no) }

y(ni,n2) =z (n1,n2) ® h(n1,n2) Z Z (k1,k2) h(ny — ki,ne — k2)

ki=—occko=—00



Convolution (1D example)

o !
ym)=zm@h®) = > zk)h®n-k

k=—o0
=[12345 [12345] * 6 =
[ ] — [642] > 613
= [2 4 6]
[1 234 5] 6 %4+ 5% 4= [4430]

< [6 4 2]

[12345]

* * E3
«— [6 4 2] 3 6 + 4 4 +5 2

[44 44 30]

k * * =
6 4 2] 2%6+3*4+4*2=[3244 44 30]
o 1%6+2%4+3%2=[203244 44 30]
[12345] 1% 4+2%2=[820 3244 44 30]

— [6 4 2]

[12345]
— [6 4 2]
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Full convolution: y(n)



Linear Shift-Invariant systems

o(ny

, Ny)

h(n4, ny)

00

O[O |O|O | O
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Impulse signal
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Impulse response function



Linear Shift-Invariant systems

y(n’l’nZ)
0(0(0(O0f(O(O(O]|0O

0

x(n4, Ny)

0

0

0

0

0/0|0]|O0

0/0|0|0]O0

0/0|0|0]O0

0

0

0

0/0|0|0]O0
00|00

0/0|0|0]O0

0/0|0|0|0|0]|0O]O

LSI

0

0

0/0|0|0]O0

0

0/0|0|0O|0O|0]|0O]O

0/0|0|0O|0O|0]|0O]O

0

0/0|0|0O|0O|0]|0O]O

0/0|0|0O|0O|0]|0O]O

0/0|0|0]O0

0/0|0|0O|0O|0]|0O]O

0/0|0|0O|0O|0]|0O]O

az(nl, ’ng) ® h(nl, 712)

y(n17n2)



Linear Shift-Invariant systems

X(n1a n2) y(n’l’ n2)
0(0(0(O0f(O(O(O]|0O 0(0(O 0(0(0
0(0(0(O0Of(O(O(O]|0O 0(0(O 0(0(0
0(0(0(O0f(O(O(O]|0O o(o(of{r{r{of(of|o

LSI
o(o(of(r{r{of(ofo ojo|1(2(2|1]]0]0
0(0(0(O0f(O(O(O]|0O o(o(of{r{r{of(of|o
0(0(0(O0f(O(O(O]|0O 0(0(0(O0f(O(O(O]|0O
0(0(0(O0f(O(O(O]|0O 0(0(0(O0f(O(O(O]|0O
0(0(0(O0f(O(O(O]|0O 0(0(0(O0f(O(O(O]|0O

The output signal is formed as a linear combination (i.e. weighted sum)
of spatially-shifted! impulse response functions.

1 Or time-shifted in 1D.



Spatial filtering through convolution

Examples of convolution filters

3x3 average filter 3x3 Gaussian filter .
(poor) Low-pass filter (better) Low-pass filter ngh-pass filter

1/9 1/9 1/9 0.0751 0.1238 0.0751 -1 -1 -1
h=1/9 1/9 1/9 h=|0.1238 0.2042 0.1238 h=|-1 8 -1

1/9 1/9 1/9 0.0751 0.1238 0.0751 -1 -1 -1

“kernels” h

oo oo

y(ni,ne) =x (ny,n2) ® h(ny,ng) Z Z x (ki,k2)h(ny — k1,ne — ko)

klz—OOkQ——OO



Spatial filtering through convolution

Examples of convolution filters

Prewitt Prewitt
11x11 average filter Vertical edge Horizontal edge

1/121 1/121 1/121 .. 1/121
1/121 1/121 1/121 .. 1/121
h=[1/121 1/121 1/121 .. 1/121

1/121 1/121 1/121 .. 1/121

Larger “support” of the filter

“kernels” h

Y (nl, TLQ) =X (7)/13’”2) ) h Tll,nz Z Z /Cl, /CQ (nl — k1,n9 — kg)

klz—OOkQ——OO



Spatial filtering

Low-pass filter Band-pass filter High-pass filter
Gaussian kernel Difference of Gaussians kernel | - Gaussian kernel

The convolution of a signal in the spatial domain has very specific effects
on the frequency content of the signal.



Exponential sequences

T (n1,ng) = e/ 1M el W22

Euler’s formula Periodic with period 2.

}

el W1 I W22 — g (w'lnl + w'zng) + g sin (winl + w'2n2)

t

Polar representation Cartesian representation

What happens if we pass exponential sequences through an LS| system?

eI Win1 pjwyne LSI
X(n1’ n2) y(n1’ n2)?
h(n4, ny)




Frequency response of a system

LS|

x(ny, ny) hen, ”2)> y(ny, ny) 7?

We calculate the convolution of x(n4, n,) with the impulse response h(n4, n,):

y(ni,n2) =z (n1,n2) ®h(ny,ne)

y(ni,mg) = Z Z edwi(m—ki)gjwy(na=k2) p (fo, ko)

ki=—00 ka=—00
y(ni,ng) =elimedvznz N N p(ky ky) e Ik e vk
i Y 'klz—oo ko= — 00
‘ ;
£ (nlvnQ) i

| |
The signal goes through untouched! H (UJ 1° UJ2 )



Frequency response of a system

o0 o0
Yy (ny,ng) = el el E E h(ky, ko) e 7 Wikrem ek
\ Y ’klz—oo ko=—00

\ J
x (ny,ns) Y

H (w'l,wf‘z)

H(w'l,w'z):

* is the frequency response of the system

 tells us how the LSI system reacted to the input frequencies
* is the Fourier transform of the impulse response h(n,,n,)

* has a magnitude and a phase



Exponential sequences

(Joseph Fourier, 1768 — 1830)

/
Exponential sequences are building blocks of any signal and so

called eigen-functions of LS| systems.

™~

Frequencies are left untouched

fwiny . jwams LSI T y
(& € —> A . 6.7 1ni e] 272 | 8.7
: 0\ i\
/ I I
Amplitude change Linear phase shift

... and any signal

LSI systems cannot produce frequencies that are not in the input.



Continuous Fourier Transform

We consider the continuous Fourier transform of a discrete signal.
The Fourier transform maps a signal to its frequency representation.

Fourier transform

Continuous variables Discrete signal
\ o o v
X (wy,wz) = Z Z x (nq, "rzg)e_j“’l"“e_jw?”2
f 1 =—00MNy=—00

The Fourier transform is periodic with period 2x in the w; and w, directions
(since the exponential sequences have the same periodicity).

Inverse Fourier transform

1 u | |
x(ny,ng) = 12 X (w1,wse) /1" e?*2"2 dwy dwo
— T

— 7T

| J
)

One period € Important implications when sampling the signal!



Frequency response: example

Given an LS| system and its impulse response h(n4, n,), we want to calculate
its (continuous) frequency response H(w,, ®»,), i.e. the Fourier Transform of
h(n4, ny).

no, A
h(n1’ n2)

h(0, 1)

1/3
h(-1, 0) h(0, 0) h(1, 0)
‘ , ‘ = n 1/3 | 1/6 | |/3
1
h(0, -1) 1/3
, h(n4, ny)

oo o0

N1=—00 Ny =—00



Frequency response: example

00 00
H wl,wg E E nl,ng € lenle_]wﬂm

h(0,0) + h(—1,0) e/ +h(1,0)e 7t + h(0,—1)e’“? + h(0,1) e 7%2 =

1 1 . 1 _. 1 . 1 .
— —elw1 —_p J% —plw2 —_p w2
3 + 66 + 66 + 66 + 68

1
- 2c08wq + 5 2005wy = 3 (1 4 coswy + cosws)

P

Continuous and periodic.

L1
6

| =



Frequency response: example

10 Low-pass filter
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H(0, 0) = 1 Magnitude of the frequency response
H(-m, n/2) = 0 of h(n,, n,) over one period (—n : n)
H(x, n/2) =0



Frequency response: example 2

-1 -1 -1 H(wi,w2) =9 —2:coswi — 2 coswa—
h(ni.no)=1| -1 9 -1 > . | _ .
2:-cos(w1 +w2) — 2:cos(w) — w2)
-1 -1 -1
Impulse response Frequency response

m

101og, (IH(w,, w,))

High-pass filter



Convolution theorem

The convolution theorem describes the input — output relationships of an LSI
system in the frequency domain.

y(ny,ng) =x (ny,ng) ® h(ng,ny)

N N N

FT IFT FT IFT FT IFT

v v v

Y(wl,wg) = X (wl,wg) \H (wl,wg)

_ Multiplication in the frequency domain
Reverse is also true.



Sampling

Under which conditions can we reconstruct
a continuous, band-limited signal from its

discrete representation with no loss of
information?

Xa(-oﬁ -QZ)

(2 4

Analog, continuous signal
(band-limited)

Region of support of the
frequency response

/

An alternative view: sampling can be modelled in direct space with a multiplication of the signal with a train of delta
functions. The convolution theorem tells us that this corresponds to a convolution of the Fourier Transform of the signal

with the Fourier Transform of the impulse train.



S a P I i n g a‘ij a‘f Spectrum of thi analog signal
X (T, Q9T5) = ! i ix Q= 2y 0 — 2T,
141,36212 T1T2k— ) a 1 T'i‘ 1,362 T21‘2
1=—00 keg=—00

XS(-Q1 T1, -QZTZ) Periodic expansion

We only store the values at the
intersection points of the grid.

a),-=.Q,-T,- Q A1t
Sampling on 2 P
a regular grid
. 4 ) (sampling frequency)

T 27
&@“\_‘,\j’ﬂ' T

& = FT
2§ (NS

)
7 |i
v

o
T4 (sampling period)

Q

The spectrum of the analog signal X is periodically extended with periods 2r/T;.
T, and T, define how far apart the replica of the spectrum will be.




Critical sampling

Xs(Q4 T4, Q,T5)

Sampling on
a regular grid

dal

A

/o ). Q/ -

Tzc i N i —

<>
T1 ,C

This (base) band contains the spectrum of the analog signal with no loss of information.



Oversampling

Sampling on
a regular grid




Undersampling

Sampling on
a regular grid

Xs(Q4 T4, Q,T5)

(2,

Aliasing

FT

Aliased spectrum of the analog signal



4

Aliasing: example

Properly sampled

Undersampled and aliased



Nyquist sampling theorem s

Xa(Q1, Q) 27 27
— — () () — > 20)
2_71. Tl NlZ Nl = Tl —_ Nl
Q2p , 1 2 2
beginning of 7T 7T
first replica ?2 - QN2ZQN2 = E > ZQNQ
Nyquist critical sampling

What should the
optimal sampling
period T; be?

To reconstruct the analog image, extract (multiply)
the digital spectrum with a low-pass filter:

14T Q IANIRY T
F“%Qﬁ:{ \To, | |< 7/Ty,| Q2 |< /T

/ 0 otherwise \

A 2D sync function in spatial domain. Constant (with gain T4T,) on the support area.




Discrete Fourier Transform (DFT)

» The continuous Fourier Transform of a discrete signal is not computable
continuous (i.e. infinitely many) frequencies o, and ®,.

« Sampling in the frequency domain results in periodic extension of the
sampled spatial signal.

Fourier series g gy
representations

BEER R RN ——
BEEBSE ; | HRE ] 1N
EEERREesas  als R

* One period in the frequency domain corresponds to one period of the
spatial domain: this mapping is the Discrete Fourier Transform (DFT).

v

» A sampled version of one period of the continuous Fourier transform is all
is needed to reconstruct the analog signal.



Discrete Fourier Transform (DFT)

Continuous
N1—1 N2—1 ) )
X (w1, ws) E E x(ny,ng)e TJwim g ywana
n1=0 nz=0 Sampling in frequency space. We keep only one period.
B 4 k1 =0,...,N; — 1
X (k1 ko) = X (w1, wo) |w1_27f ki wo= 2% kq P
fl fjv kQZO,...,NQ—l
N, samples N, samples
DFT pair
pime e 22 ky=0,..., N —1
klak'Q Z E 4y n1,n2 _jN_lnlkl ~IN 52k ! e
n1=0 ns=0 k2:O? ’3N2_1
1 Ni1—1 No—1
() = e 3 3 X kg [ m =0 N
15Y2 =0 ka=0 ne=0,...,No—1

Most properties of the continuous FT apply to the DFT with one exception: linear shifts become

circular shifts (“wrap around”).



Fast Fourier Transforms (FFTs)

Ni—1 Ny—1
—j3E ik —j2Enok
DFT: X (ky, ko) = E E x(ny,n2)e IRk =i Ny naka

ni= =0 HQ—O

ki =0,.... Ny —1

For each (k4, k,): N, * N, multiplications;
(K1, k2): Ny 2 P { R A

For N, = N, = N, a full DFT requires N4 multiplications.

Fast Fourier Transforms (FFTs) are a family of algorithms that
impressively speed up calculation of the DFT.

Best runtime is in the order:

For a 1024 x 1024
image, the FFT s

. aNZIOQZN approximately 10° times
with a < 1. faster that the DFT.




DFT centered

- 312

w2

’ lDFT centered

|
“,‘4\;\ Y




L
N

Increasing frequency
P————
Increasing
frequency



Low-pass filtering

%

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



-

High-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



Band-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



Removing unwanted frequencies




Circular convolution

linear convolution

y(ny,ng) = x (ny,ng) ® h(ng,ny)

DFTj DFTj

Y (k1,k2) = X (k1, ko) - H (K1, k2)

IDFTl circular convolution

Y (ny,ns)

The circular convolution is infinite-length and periodic whereas the linear
convolution is finite length, therefore a trick is needed to calculate linear
convolution in frequency domain.




Circular convolution

g Aliased result of

linear convolution

VS.

Result of
linear convolution

Inappropriate support — aliasing Appropriate support




Linear convolution in frequency
domain (how to)

M, L, Ny+M,-1
| - LyNgtM,-1
0
Vohing ny) -
ny ( i 2) ny M, - 1) / 2)

Pad x(n4, ny) and h(n4, n,) with zeros to size (N;+M;-1 x No+My-1)
Calculate the FFT (DFT) of both

Multiply the transforms together

Calculate the inverse FFT of the result — same result as linear convolution
Carve out the result from the center of the result



Linear convolution in frequency
domain (how to)

L, Ny+M,-1

n;



Linear convolution in frequency
domain (how to)

Convolution in spatial domain

>> x =[123454321]; %N=29
>> h=1[12321]; %M=75
>> y = conv(x, h)
y:
1 4 10 18 27 34 37 34 27 18 10 4 1 %N+M-1=13
>> y = conv(x, h, 'same")
y:

10 18 27 34 37 34 27 18 10 % N (the borders have size = (M - 1) / 2)

Convolution in Frequency domain with inappropriate support - aliasing

>> ifft(fft([ 1 23454 321]) .* fft([1 23 21 0 0 0 0])) % They need to have at least the same size
y:
19 14 14 19 27 34 37 34 27

Convolution in Frequency domain with appropriate support

ifft(fft(x, numel(x) + numel(h) - 1) .* fft(h, numel(x) + numel(h) - 1))
cconv(x, h)

3R R
]

y
y

>> ifft(fft([ 1234543210000]) .*xfft([123210000000 0]))

y:

1.00 4.00 10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 4.00 1.00
>> ifft(fFft([ 1234543210000]) .*fft([3210000000012])) 000
y:

10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 l4.00 1.00 1.00 4.00.
T

The “border” is all on one side.




