Session 1: First steps in MATLAB

Aaron Ponti

MATLAB is a high-level, high-performance matrix/array language for
technical computing that integrates computation, visualization, and program-
ming in an easy-to-use environment. But MATLAB is not just a programming
language: MATLAB also offers a set of desktop tools and graphical interfaces
for the interactive handling and visualization of data.

One of the great strengths of MATLAB is given by toolboxes, a family of
application-specific solutions that extend the MATLAB environment to solve
particular classes of problems. Relevant toolboxes at the FMI are the image
processing toolbox, the statistics toolbox and the parallel computing toolbox.

In this course we will focus on learning the basics of MATLAB program-
ming.

Contents

1 Running MATLAB 2
2 Getting help 2
3 MATLAB as a calculator 3
4 Assignments (to variables) 4
5 Variable names 5
6 Suppressing output 6
7 Elementary functions 6
8 Scripts 7
9 User-defined functions 7
10 Relational and logical operators 9
11 Conditional flow control: if, else, switch 10
12 Loop control: for, while, continue, break 11
13 References 13

Version 1.0.3

2 2 GETTING HELP

4sun

Figure 1: The MATLAB desktop.

1 Running MATLAB

To start MATLAB, double-click on the MATLAB shortcut on the Desktop. In
the Imaging Room, MATLAB will greet you with the following:

Please wait while the subversion repositories are updated... Done (details).
Please wait while the dynamic MATLAB and JAVA paths are built... Done.

WARNING: Do NOT save the MATLAB path!
If you want to work with your code on shared machines, follow the user
configuration instructions at http://faim.fmi.ch/index.php?id=86.

Ready.
>>

This is a special setup at the FMI that takes care of updating and adding all
the code to the MATLAB path at startup. The >> sign is the command prompt.
MATLAB is waiting for user input (see Figure 1).

2 Getting help

First and foremost, we will learn how to get help. Type (without the >>):

>> help

at the MATLAB prompt. help, by itself, lists all primary help topics. Each
primary topic corresponds to a directory name on the MATLAB path. Notice
that the entries are displayed as hyperlinks. Clicking on any link is analogous
to typing help topic. Try clicking on matlab/elmat or typing:

>> help matlab/elmat
Elementary matrices and matrix manipulation.

Elementary matrices.

Zeros — Zeros array.
ones - Ones array.
eye - Identity matrix.

you will get the list all elementary functions for matrix creation and manipu-
lation. Help for specific functions can be obtained by typing help functionname,

e.g..

>> help zeros

ZEROS Zeros array.
ZEROS (N) is an N-by-N matrix of zeros.

ZEROS (M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.

Another useful facility is to use the lookfor keyword or (better, but slower) lookfor
keyword -all command, which searches the help files for the keyword (more to
this in section 9).

>> lookfor identity

eye — Identity matrix.
speye — Sparse identity matrix.

Exercise: try to figure out which functions you could use (1) to median filter an
image and (2) to calculate the standard deviation of a sample of measurements.

A nicer looking documentation browser with additional information is the
helpdesk, that can be started either from the Start menu in the bottom-left corner
of the MATLAB window or by typing;:

>> helpdesk

at the MATLAB prompt. To access the documentation for a specific function in
the helpdesk you can type doc functionname, e.g.:

>> doc zeros

Especially helpful for first-time users are the demos. Again, these can be started
from the Start menu or by typing:

>> demos

at the MATLAB prompt. Additional references can be found at the end of this
session (section 13).

3 MATLAB as a calculator

The basic arithmetic operators are +, -, *, /, ~ and these are used in conjunction
with brackets: (). The symbol » is used to get exponents (powers): 2°4=16.
Operator precedence in MATLAB is defined as follows:

Exercise

Exercise

4 4 ASSIGNMENTS (TO VARIABLES)

1. quantities in brackets
2. powers
3. *, / working left to right
4. +, - working left to right
For example,
>> 2 + 3/4%5
is performed in this sequence:
>> 2 +33\14425

ans =
5.7500

Exercise: try to figure out the result of following calculations before you try
them in MATLAB:

o 142/3%4/2

o 5+(4*3)72-1
o (3+2)72*2/5
o 54/(4-372)

4 Assignments (to variables)

We saw in section 3 that the result of a calculation is returned in MATLAB as
follows:

>> 3-274

ans =
-13

The result (-13) is assigned to the variable ans. We can use this variable for a
subsequent operation:

>> ans * 5

ans =
-65

The value of the variable ans is now set to -65 (the previous value is lost). We
often would like to preserve the result of intermediate calculations, and we can
do this by using our own names to store numbers:

>> x = 3-2"4

x =
-13

We can use the variable x for a subsequent operation:

>> vy = x x 5

y =
-65
After the second calculation, x has the value —13 and y is —65, and both can be
used in subsequent calculations. This is an example of assignment statements:
values (-13, -65) are assigned to variables (X, y). Remark: each variable must be
assigned a value before it may be used on the right of an assignment statement!
All variables created suring a session of MATLAB are stored in the
workspace. The content of the workspace can be visualized at any moment
either in the workspace widget in MATLAB’s desktop or from the console by
typing:

>> who

Your variables are:

Xy
Exercise: there is another command that gives you more information about the
variables currently in the workspace. Find it!

5 Variable names

Variable names must begin with a letter, which may be followed by any com-
bination of letters, digits, and underscores. MATLAB distinguishes between
upper and lowercase characters, meaning that a and A are different variables.
Variable names have a maximum length as returned by the function name-
lengthmax (in our case: 63 characters) and will be truncated if longer. (Note
that you can use variables names longer than namelengthmax characters, but if
their first namelengthmax characters are the same, MATLAB won't be able to
distinguish between them). One can use isvarname to make sure the name is
valid and iskeyword to make sure that the selected name is not one of MAT-
LAB’s reserved keywords.

Exercise: Are the following names valid variable names in MATLAB. If not,
why?

¢ 21st_century
e century_2l1st
® varname

* pi

e for

e while

¢ hello world

e is THIS valid

MATLAB also reserves several names for classical constants like: ans, eps, i,
Inf, j, NaN, pi. Exercise: find out what they are. Careful: you are allowed to
redefine these constants!

Exercise

Exercise

Exercise

Exercise

Exercise

6 7 ELEMENTARY FUNCTIONS

6 Suppressing output

One often does not want to see the result of intermediate calculations. To sup-
press the output just terminate the assignment statement or expression with a
semi—colon:

>> x=-13; y = 5%x, z = xXx"2+y

y =
-65

104

The value of x was not displayed. This will be important in particular when
we will start writing scripts and functions.

Note also that we can place several statements on one line, separated by
commas or semicolons.

7 Elementary functions

MATLAB has a large number of elementary functions that can be used straight-
away from the command prompt. Examples of elementary math functions are
the trigonometric functions cos, sin, tan and their inverse acos, asin and atan and
other elementary exponential functions like sqrt, exp, log, log10. For a longer
list of elementary mathematical functions type help matlab/elfun.

Exercise: calculate the sin of 45 degrees.

Another class of built-in functions is the class of system functions: clear, tic,
toc, format, who, whos ... Exercise: find out what these functions are.

Nllost elementary functions are built-in: they are implemented as executable
files.

In addition to built-in functions, MATLAB also offers a large number of core
functions written using the MATLAB programming language (M-files, see sec-
tion 9). In addition, toolboxes (to be bought separately) also extend the palette
of MATLAB functions with program functions and some additional MEX func-
tions (see Session 3). For example, type help stats for a list of functions con-
tributed by the Statistics toolbox or help images for the functions provided by
the Image Processing toolbox.

No matter what the actual implementation is, functions are program rou-
tines that accept input arguments and return output arguments:

[outl, out2, ...] = functionName(inl, in2, ...)

A function can take any number of input parameters inl, in2, ... and, in con-
trast to many programming languages like C, C++, Java, ..., also an arbitrary
number of output arguments out1, out2, ...

The sin function only takes one input parameter, the angle in radians, and
returns one output:

1Unlike MATLAB program file functions, you cannot see the source code for built-ins. Although
most built-in functions do have a program file associated with them, this file is there mainly to
supply the help documentation for the function.

x = sin(pi/2)

8 Scripts

A script file is an external file that contains a sequence of MATLAB statements.
Script files have a filename extension of .m and are often called M-files.

Scripts are the simplest kind of M-file (see also section 9). They are use-
ful for automating blocks of MATLAB commands, such as computations you
have to perform repeatedly from the command line. Scripts share the base
workspace with your interactive MATLAB session and with other scripts. They
can operate on existing data in the workspace, or they can create new data on
which to operate. Although scripts do not return output arguments, any vari-
ables that they create remain in the workspace, so you can use them in further
computations. (You should be aware, though, that running a script can unin-
tentionally overwrite data stored in the base workspace by commands entered
at the MATLAB command prompt.) In addition, scripts can produce graphical
output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no dec-
larations or begin/end delimiters (compare with section 9).

Like any M-file, scripts can contain comments. Any text following a percent
sign (%) on a given line is comment text. Comments can appear on lines by
themselves, or you can append them to the end of any executable line.

MATLAB has a built-in editor, that can be started from the MATLAB

prompt by typing:

>> edit

Exercise: write a script (save it as scriptl.m and then launch it by typing script1
at the MATLAB prompt) to solve following problem: the longest side of a right-
angle triangle is 8 cm and one of its angles is 330. How long are the other two
sides? (Hint: the sine theorem states: a/sina = b/sinf = c/siny).

9 User-defined functions

Functions are program routines, usually implemented in M-files, that accept
input arguments and return output arguments (like the sin function we saw
in section 7). Functions operate on variables within their own workspace: this
area, called function workspace?, is separate from the base workspace (the
workspace that you access at the MATLAB command prompt and in scripts)
and gives each function its own worspace context.

You define MATLAB functions within a function M-file; that is, a file that
begins with a line containing the function keyword. You cannot define a func-
tion within a script M-file or at the MATLAB command line.

The M-file begins with:

2In other programming languages, one usually refers to this as the scope of a function.

Exercise

Exercise

8 9 USER-DEFINED FUNCTIONS

function [outl, out2, ...] = functionName(inl, in2, ...)
First comment line: the one scanned by the lookfor command
Additional comment lines, for more information to the user.
These are displayed on the console when help functionName
is typed (and are scanned by the lookfor -all command) .

o o oo

o

Here begins the actual code.

Functions always begin with a function definition line and end either with (1)
the first matching end statement, (2) the occurrence of another function defini-
tion line, or (3) the end of the M-file, whichever comes first.

If a file contains more than one function, only the first one is visible (and
thus callable) from outside the file where it is defined (i.e. from the MATLAB
command line or from functions defined in other files): this is the primary
function. All other functions in the file, called subfunctions, can only be called
by the primary function or the other functions in the same file3.

Using end to mark the end of a function definition is required only when the
function being defined contains one or more nested functions. A nested func-
tion is a function defined within another function. In this example, function B
is nested in function A:

function x = A(pl, p2, ...)
function y = B(p3)
function B has access to both pl and p2 variables,

even if none of them are explicitly passed as
% parameters to B.

oo .

o

end
end

Like other functions, a nested function has its own workspace where variables
used by the function are stored. But it also has access to the workspaces of
all functions in which it is nested. So, for example, a variable that has a value
assigned to it by the primary function can be read or overwritten by a function
nested at any level within the primary. Similarly, a variable that is assigned in
anested function can be read or overwritten by any of the functions containing
that function.

An even more global way to share variables between workspaces is by
definining them, not surprisingly, as global variables (using the global key-
word). A global variable is visible in each workspace that defines it as such?.

You can also evaluate any MATLAB statement using variables from either
the base workspace or the workspace of the calling function using the evalin
function.

Exercise: take the script (scriptl.m) you wrote in section 8 and change it
into a function (save it as sineTheorem.m) that takes the length of the longest
side and one of the angles (not the one opposed to it...) of a right-angle triangle
and returns all remaining lengths and angles.

3There is an exception of this rule: class methods (functions) defined in the same file as the class
itself can be accessed from outside.

4Global variables are usually considered bad practice because they are non-local: a global vari-
able can potentially be modified from anywhere, and any part of the program may depend on
it.

10 Relational and logical operators

A relational operator is language construct or operator that tests or defines
some kind of relation between two entities. These include numerical equality
(e.g., 5 = 5) and inequalities (e.g., 4 > 3): the result of such a tests is either
true or false. An expression created using a relational operator forms what
is known as a relational expression or a condition. In MATLAB, relational
operators are == (equal to), ~= (not equal to), < (less than), > (greater than), < (less
than or equal to), >= (greater than or equal to).

a 5;
a 3

Vol

ans =
1

MATLAB represents true as logical 1 and false as logical 0.

A logical operator combines relational expressions in a way that again re-
sults in either a true or false result. Here we will consider the && (and), | | (or)
and ~ (not) operators, that operate on scalars.

While a (i.e. 5) is indeed larger than 3, it is not an even number and therefore
the combined expression

a > 3 && rem(a, 2) ==

evaluates to false. The && and || operators are so-called short-circuit op-
erators: they evaluate their second operand only when the result is not fully
determined by the first operand. In the following example, the test after the
&& is not evaluated since the first evaluates to false:

Short-circuit operators are handy in situations like the following:

b~=04s&& a/ b>1

If b is zero, a/b (i.e. a/0) is never calculated®.
A logical expression

A && B && C && ... && 2

is true only if all statements A, B, C, ..., Z are true®.
A logical expression

SInterestingly, while a / b in most other programming languages will result in some sort of a
‘divide by 0" error, in MATLAB dividing by zero returns Inf, which is correctly > 1.
6Gee the section on logical conjunction on http:/ /en.wikipedia.org/wiki/Truth_table.

10 11 CONDITIONAL FLOW CONTROL: IE, ELSE, SWITCH

All'B Il CIlI ... 1l 2

is true if at least one of its operands is true’.
The ~ (not) operator, produces a value of true if its operand is false and a
value of false if its operand is true®.

11 Conditional flow control: if, else, switch

Conditional statements enable you to select at run time which block of code to
execute. The simplest conditional statement is an if statement. For example:

% Generate a random (integer) number between 1 and 100
a = randi(100);

[

% Is the number even?

if rem(a, 2) == 0
disp("a is even!’);

end

If a is even, this code will output:
a is even!

Unfortunately, if a is odd nothing will be output. The keyword else comes to
rescue:

if rem(a, 2) == 0
disp("a is even!’);
else
disp("a is odd!’);
end

Now all cases are covered. If statements can include any number of alternate
choices using the keyword elseif:

if a < 30
disp(’small’)
elseif a < 80
disp ('medium’)
else
disp (’large’)
end

Notice that a = 20 would satisfy both the first and the second test, but MATLAB
exits the if block as soon as the first true condition is met.

If you want to test for equality against a set of known values, it is cleaner
with a switch statement:

[dayNum, dayString] = weekday(date, ’long’, ’en_US’);

switch dayString
case ’Monday’

7See the section on logical disjunction on http:/ /en.wikipedia.org/wiki/Truth_table.
8See the section on logical negation on http:/ /en.wikipedia.org/wiki/Truth_table.

11

disp(’A new week is starting...’)
case 'Tuesday’

disp(’Still a loooong way to go’)
case ’Wednesday’

disp(’Half way!’)
case 'Thursday’

disp (’Second half ;-)")
case 'Friday’

disp (’Last day of week!’)
otherwise

disp (' Weekend!’)

end

The otherwise keyword covers all cases that are not captured in a case. In a case
statement you can also test for integers:

switch dayNum
case 1
disp(’A new week is starting...’)

Other variable types would not work. As was the case for if, also for switch
MATLAB executes the code corresponding to the first true condition, and then
exits the code block.

12 Loop control: for, while, continue, break

The for loop repeats a group of statements a fixed, predetermined number of
times. In MATLAB a for statement has following syntax:

for i = start_value : step: end_value

statements
end

with optional step (if omitted, a step of 1 is assumed). For example:
for x =1 : 10

X * X
end

prints the square of the first ten numbers to the console. For loops can be
nested:

These nested loops result in the following sequence of operations:

(x =1) + (y =1) =2
(x =1) + (y =2) =3
(x =2) + (y=1) =3
(x =2) + (y=2) =4
(x =3) + (y=1) =4
(x =3) + (y =2) =5

12 12 LOOP CONTROL: FOR, WHILE, CONTINUE, BREAK

For each iteration of the external for loop, all iterations of the internal loop are
executed.

The while loop repeats a group of statements an indefinite number of times
under control of a logical condition. A matching end delineates the statements.
A while statement has following syntax:

while expression
statements
end

How many integer values n does it take to reach n! > 1000000°?

n=1;
nFactorial = 1;
while nFactorial < 1000000
n=n+ 1;
nFactorial = nFactorial * n;
end
% Since we went one iteration too far, we
% go back one step
nFactorial = nFactorial / n
n=mn-1

nFactorial =
362880

9

The continue statement passes control to the next iteration of the for loop or
while loop in which it appears, skipping any remaining statements in the body
of the loop. The same holds true for continue statements in nested loops. That
is, execution continues at the beginning of the loop in which the continue state-
ment was encountered.

for x =1 : 5
if x ==
continue
end

5

The break statement lets you exit early from a for loop or while loop. In nested
loops, break exits from the innermost loop only.

°In mathematics, the factorial of a non-negative integer 1, denoted by n!, is the product of all
positive integers less than or equal to n. For example, 5! = 5 x 4 x 3 x 2 x 1 = 120. The value of 0!
is1.

13

13

for x =1 : 5

References

The official MATLAB documentation (html):
http:/ /www.mathworks.com/access/helpdesk/help /helpdesk.html.
Each product also has a pdf version of the documentation.

. An Introduction to Matlab, Copyright (c) David E. Griffiths 1996, Univer-

sity of Dundee:
http:/ /wiki.bc2.ch/download /attachments /5702724 /MatlabNotes.pdf

. MATLAB Exchange. An open exchange for the MATLAB and Simulink

user community:
http:/ /www.mathworks.com/matlabcentral /

	Running MATLAB
	Getting help
	MATLAB as a calculator
	Assignments (to variables)
	Variable names
	Suppressing output
	Elementary functions
	Scripts
	User-defined functions
	Relational and logical operators
	Conditional flow control: if, else, switch
	Loop control: for, while, continue, break
	References

