
Session 2: Data types and structures Version 1.0.1

Aaron Ponti

A data type (or datatype) is a classification identifying one of various types
of data, such as floating-point, integer, or Boolean, that determines: (1) the
possible values for that type; (2) the operations that can be done on values of
that type; and (3) the way values of that type can be stored. Most programming
languages also allow the programmer to define additional data types (or classes),
usually by combining multiple elements of other types and defining the valid
operations of the new data type.

Contents

1 Data types 2
1.1 Logical . 3
1.2 Char . 3
1.3 Numeric: integers . 4
1.4 Numeric: floats . 5

1.4.1 Real numbers . 5
1.4.2 Complex numbers . 5
1.4.3 Special values . 6

1.5 Structures . 6
1.5.1 Building structures using assignment statements 6
1.5.2 Building structures using the struct function 6
1.5.3 Accessing structure fields 7
1.5.4 Nesting structures . 7

1.6 Cells . 7

2 Numeric Arrays 7
2.1 1-dimensional numeric arrays: vectors 8

2.1.1 Row vectors . 8
2.1.2 Column vectors . 9
2.1.3 The colon (:) notation . 10
2.1.4 Extracting bits of a vector (slicing) 10
2.1.5 Transposing . 11
2.1.6 Plotting vectors . 11
2.1.7 Finding elements in an array 12

2.2 2-dimensional numeric arrays: matrices 12
2.2.1 Transpose of a matrix . 14
2.2.2 Extracting bits of a matrix (slicing) 14
2.2.3 Iterating over arrays . 15

2.3 Multidimensional numeric arrays 16

1

2 1 DATA TYPES

3 Structure arrays 16
3.1 Building structure arrays using assignment statements 16
3.2 Building structure arrays using the struct function 17

4 Cell arrays 17

5 Function handles 18

6 User-defined classes 19

7 References 19

1 Data types

Compared to strongly-typed programming languages, MATLAB does not
force you to specify the datatype of a variable before you assign a value to
it. If you tried the following in a C++ program:

a = 3;

the compiler would tell you something like:

error: ‘a’ was not declared in this scope1

In contrast, as we saw in session 1, in MATLAB it is perfectly legitimate to type:

>> a = 3;

MATLAB creates a variable called a and assigns the value 3 to it. It is impor-
tant to realize that the variable is not type-less: MATLAB knows an extensive
number of data types (more to this below), but automatically decides on the
variable type depending on what one tries to assign to the variable itself. The
default data type for a numeric right-value (the object on the right-hand side
of the = sign in an assignment) is double. One can test it by typing:

>> class(a)

ans =
double

A series of data types are available in MATLAB.

• logical

• char

• numeric

– integer

* uint8, int8

* uint16, int16

* uint32, int32
1A correct declaration (and assignment) would be: int a = 3;

1.1 Logical 3

* uint64, int64 (on 64-bit machines only)
– floating point

* single (single precision)

* double (double precision), contains also complex numbers

• struct

• cell

• function handles

• Java objects

• user-defined classes

Moreover, all these data types can be ordered into arrays (see section 2).
In the following we will give more details on all relevant data types.

1.1 Logical

A logical variable can take only two values: 1 (or true) and 0 (or false). You can
create a logical variable like this:

>> a = true;
>> b = false;
>> c = logical(1);
>> d = logical(3)

d =
1

By definition, 0 is converted to false when casted2 to type logical, and every-
thing else is casted to logical(1).

Certain MATLAB functions and operators return logical true or false to in-
dicate whether a certain condition was found to be true or not. For example,
the statement 50>40 returns a logical true value.

One can test whether a variable is logical with the following call:

>> islogical(a)

ans =
1

1.2 Char

A variable that contains a character has class char. A string (a series of charac-
ters) is an array of chars. You can create a char variable like this:

>> a = ’a’;
>> b = ’This is a character array (a so-called string)’;
>> length(b)

ans =
46

length(b) returns the length of the character arrays (the number of chars in the
string).

2To cast a variable means to convert it from one data type to another (that is compatible).

4 1 DATA TYPES

1.3 Numeric: integers

A numeric integer, as the name says, is a positive or negative whole number
(without decimal digits) or zero. Depending on the precision of the machine
(e.g. 32 or 64 bit), there is a limit to the largest (exact) positive and negative
numbers that can be stored into an integer variable. Larger numbers are pos-
sible, but will be approximated by floating point numbers and stored into a
double variable.

In MATLAB, there are several different integer types: uint8, int8, uint16,
int16, uint32, int32, uint64, int64 (the last two on 64-bit machines only). The
uint (unsigned integer) data types only store positive numbers, while the int
data type (signed integers) store both negative and positive numbers. The digit
at the end of the type name (8, 16, 32, 64) specifies how many bits are used in
memory to store the value and consequently the maximum number of differ-
ent numbers that can be expressed. The maximum number of different 8-bit
numbers is 28=256. For uint8 variables, this means all numbers between 0 and
255; for int8 variables, all numbers between -128 and 127. Although it might
appear limiting (and maybe even irrelevant) to force a numeric variable to be
uint8 instead of the default double, one has to note that integer (and single-
precision) arrays offer more memory-efficient storage than double-precision.
This can very fast become decisive when working with very large amounts of
data (e.g. a 4D microscopy dataset).

The functions intmin(’type’) and intmax(’type’) return then minimum and
maximum possible number that can be stored in a variable of type ’type’.

Exercise: fill the following table.Exercise
uint8 int8 uint16 int16 uint32 int32 uint64 int64

int min
int max

MATLAB stores numeric data as double by default. To store data as an inte-
ger, you need to convert from double to the desired integer type. For example:

>> a = int16(1024);

Be careful that MATLAB will perform mapping to the range endpoints where
required.

Exercise: Try the following and discuss what happens.Exercise

>> a = uint8(150);
>> b = uint8(130);
>> c = a + b

Exercise: Try the following and discuss what happens.Exercise

>> a = int8(-120);
>> b = uint8(100);
>> c = a + b

You can test whether a variable has a specific type by using the isa() function:

>> isa(a, ’uint8’)

ans =
0

1.4 Numeric: floats 5

1.4 Numeric: floats

1.4.1 Real numbers

MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make any
number single precision with a simple conversion function (see also section
1.3):

>> a = single(1.75);

Just for your information, MATLAB constructs the double and single data type
according to IEEE® Standard 754 for double and single precision. We don’t
need to know more than this.

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However, be-
cause they are stored with fewer bits, numbers of type single are represented
to less precision than numbers of type double. Because there are only a fi-
nite number of double-precision numbers, you cannot represent all numbers
in double-precision storage. On any computer, there is a small gap between
each double-precision number and the next larger double-precision number.
You can determine the size of this gap, which limits the precision of your re-
sults, using the eps function. The value of eps(x) is different for every value of
x. To get an idea of the precision of a given data type one usually use eps(1).

Exercise: fill the following table. Exercise
single double

eps(1)
Exercise: Round-Off error. The decimal number 4/3 is not exactly repre- Exercise

sentable as a binary fraction. Try the following calculations. What should be
the result? And what do you get?

>> 1 - 3*(4/3 - 1)

Moreover, the covered range of single data is much smaller than the range cov-
ered by double data. In analogy to the integers, one can obtain the minimum
and maximum possible values for the single and double data types using the
realmax function.

Exercise: fill the following table. Exercise
single double

real min
real max

1.4.2 Complex numbers

Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is repre-
sented in MATLAB by either of two letters: i or j. Complex numbers are by
default of class double but can be casted to single.

>> a = 1 + i * 3;
>> b = 2 - 5i;
>> c = single(b);

6 1 DATA TYPES

1.4.3 Special values

MATLAB uses the special values inf, -inf, and NaN to represent values that are
positive and negative infinity, and not a number respectively3.

Exercise: Try the following.Exercise

>> a = 1 / 0
>> b = -1 / 0
>> c = 0 / 0

1.5 Structures

Structures are MATLAB arrays with named "data containers" called fields. In
contrast to the elements of an array, the fields of a structure can contain any
kind of data. For example, a structure referring to a patient’s records might
contain one field containing a text string representing a name, another contain-
ing a scalar representing a billing amount, a third holding a matrix of medical
test results, and so on.

You can build structures in two ways:

• Using assignment statements

• Using the struct function

1.5.1 Building structures using assignment statements

You can build a simple structure array by assigning data to individual fields.
MATLAB automatically builds the structure as you go along. For example,
create the patient structure array introduced at the beginning of this section:

>> patient.name = ’John Doe’;
>> patient.billing = 127.00;
>> patient.test = 79;

Now entering patient at the command line results in:

>> patient

patient =
name: ’John Doe’

billing: 127
test: 79

1.5.2 Building structures using the struct function

You can preallocate an array of structures with the struct function. Its basic
form is:

>> strArray = struct(’field1’,val1,’field2’,val2, ...)

where the arguments are field names and their corresponding values. To re-
produce the preceeding example:

3The Statistics Toolbox (ab)uses NaN to represent missing measurements.

1.6 Cells 7

>> patient = struct(’name’,’John Doe’,’billing’,127.00,’test’,79);

patient =
name: ’John Doe’

billing: 127
test: 79

1.5.3 Accessing structure fields

You can access the various fields in a structure with following syntax: vari-
able.fieldName.

>> patient.name

ans =
John Doe

1.5.4 Nesting structures

A structure field can contain another structure, or even an array of structures.
Once you have created a structure, you can use the struct function or direct
assignment statements to nest structures within existing structure fields. For
example:

>> name.firstName = ’John’;
>> name.familyName = ’Doe’;
>> patient.name = name

patient =
name: [1x1 struct]

billing: 127
test: 79

>> patient.name

ans =
firstName: ’John’
familyName: ’Doe’

1.6 Cells

A cell is a container for any type of data. However, cells make sense only when
used as arrays. We will postpone the treatment of cell arrays to section 3.

2 Numeric Arrays

All data types in MATLAB can be arranged into arrays. Arrays can have any
number of dimensions and a maximum number of entries of 216 − 1 in MAT-
LAB up to version 7.3 and of 248 − 1 as of MATLAB v7.4 (although officially
only as of v7.5).

An essential characteristics of arrays is that all elements of an array must
share the same data type.

Array dimensions can be changed dynamically, although this is not recom-
mended for large arrays.

8 2 NUMERIC ARRAYS

In the following we will discuss the array types that are most relevant for
our purposes.

2.1 1-dimensional numeric arrays: vectors

A vector is a numeric array (containing any of the numeric data types we dis-
cussed in sections 1.1, 1.3, and 1.4) and comes in two flavours: row and column
vectors.

2.1.1 Row vectors

Row vectors are lists of numbers separated by either commas or spaces. The
number of entries is known as the “length” of the vector and the entries are
often referred to as “elements” or “components” of the vector. The entries must
be enclosed in square brackets.

>> v = [1 3 sqrt(5)]

v =
1.0000 3.0000 2.2361

>> length(v)

ans =
3

We can do certain arithmetic operations with vectors of the same length:

>> a = [1 2 3];
>> b = [3 2 1];
>> a + b

ans =
4 4 4

>> a - b

ans =
-2 0 2

>> a .^ b

ans =
1 4 3

>> a .* b

ans =
3 4 3

>> a ./ b

ans =
0.3333 1.0000 3.0000

>> a * b
??? Error using ==> mtimes
Inner matrix dimensions must agree.

2.1 1-dimensional numeric arrays: vectors 9

The operations + and − behave exactly has one would expect. The two vectors
a and b are summed or subtracted element-wise. To obtain the same behavior
with multiplication and division one has to use the .* and ./ operators, respec-
tively. The reason for this is that MATLAB is a matrix-centric language, and
the * operator is used for matrix multiplications (brush up you linear algebra
books!). Indeed, the a * b call fails because of incompatibility of the dimensions
of the two operand a and b (see below).

Arithmetic operations can also be performed between scalars (single num-
bers) and vectors. This is the only exception to the requirement of vectors being
of the same length.

>> a = [1 2 3];
>> a + 1

ans =
2 3 4

>> a - 1

ans =
0 1 2

>> a .* 2

ans =
2 4 6

>> a ./ 2

ans =
0.5000 1.0000 1.5000

>> a * 2

ans =
2 4 6

When multiplying a vector with a scalar, both operators .* and * behave the
same.

2.1.2 Column vectors

These have similar constructs to row vectors. When defining them, entries are
separated by ; or “newlines”:

>> c = [1; 3; sqrt(5)]

c =
1.0000
3.0000
2.2361

>> c2 = [3
4
5]

c2 =
3

10 2 NUMERIC ARRAYS

4
5

All rules for artithmetic operations we saw for row vectors apply to column
vectors as well. The size of a vector can help us discern between a row vector
and a column vector:

>> size([1 2 3])

ans =
1 3

>> size([1; 2; 3])

ans =
3 1

Exercise: Try the following and discuss the results.Exercise

>> a = [1 2 3];
>> b = [1; 2; 3];
>> a + b
>> a .*b
>> a * b
>> b * a

2.1.3 The colon (:) notation

This is a shortcut for producing row vectors.

>> 3:7

ans =
3 4 5 6 7

More generally a : b : c produces a vector of entries starting with the value a,
incrementing by the value b until it gets to c (it will not produce a value beyond
c). To create decreasing vectors, one sets a > c and b < 0.

>> 0 : 0.5 : 2

ans =
0 0.5000 1.0000 1.5000 2.0000

>> 2 : -0.5 : 0

ans =
2.0000 1.5000 1.0000 0.5000 0

Exercise: Try the following.Exercise

>> a = 7:3

2.1.4 Extracting bits of a vector (slicing)

One can extract parts of a vector by specifing the indices of the first and last
elements to be extracted. In contrast to other programming language like C++,
the first index of a vector is 1 (and not 0).

2.1 1-dimensional numeric arrays: vectors 11

>> a = 2 : 2 : 20;
>> a(5 : 7)

ans =
10 12 14

Exercise: Extract every third element from the vector a defined above. Exercise

2.1.5 Transposing

We can convert a row vector into a column vector (and vice versa) by a process
called transposing denoted by ’:

>> a = [1 2 3];
>> a’

ans =
1
2
3

Please notice that if a is a complex vector, a’ returns the complex conjugate
transpose of a. To get the simple transpose use .’.

2.1.6 Plotting vectors

In MATLAB, most if not all elementary functions are applied element-wise on
vectors. In this section we will use our knowledge on vectors and functions
to plot some elementary function (we will dedicate a large part of Session 4 to
plotting in general).

Suppose we wish to plot a graph of y = sin(3πx) for 0 ≤ x ≤ 1. We do
this by sampling the function at a sufficiently large number of points and then
joining up the points (x, y) by straight lines. Suppose we take N + 1 points
equally spaced a distance h apart:

>> N = 50; h = 1/N; x = 0:h:1;

defines the set of points x = 0, h, 2h, ..., 1 − h, 1.
The corresponding y values are computed by:

>> y = sin(3*pi*x);

and finally plotted with:

>> plot(x,y)

Exercise: Try to plot again, this time setting N = 10. What do you notice? Exercise
Exercise: Add a label to the x and y axes and a title to the plot (hint: try Exercise

with help plot).

12 2 NUMERIC ARRAYS

2.1.7 Finding elements in an array

Often one is interested in finding the (indices of the) elements of an array that
satisfy a specific condition. MATLAB offers the find function for this: precisely,
find returns the indices of non-zero elements, but these can easily be created by
means of relational expressions4. Try the following:

>> a = 1 : 10;
>> b = a > 5

b =
0 0 0 0 0 1 1 1 1 1

The vector b is of class logical and contains 1 (true) at the positions where the
condition is fulfilled. Now, try find on vector b:

>> find(b)

ans =
6 7 8 9 10

The process can obviously be automatized:

>> find(a > 5)

ans =
6 7 8 9 10

Exercise: Create an array a with elements from 1 to 100. Replace all even ele-Exercise
ments by 0 (hint: use the mod function).

Elementwise logical operators: &, |, ~ In Session 1 we saw the short-circuit
logical operators &&, ||, and ~ that work on relation operations between
scalars. The analogous elementwise logical operators &, | and ~ can be used to
combine the results of relational operators applied to all elements of two or more
arrays provided they are all of the same size:

>> a = 1 : 10;
>> b = a > 5 | a == 3

b =
0 0 1 0 0 1 1 1 1 1

Exercise: Find and display all numbers between 1 and 100 that are even andExercise
divisible by 3 but not by 4.

2.2 2-dimensional numeric arrays: matrices

Row and column vectors are special cases of matrices. An m × n matrix is a
rectangular array of numbers having m rows and n columns. It is usual in a
mathematical setting to include the matrix in either round or square brackets;
in MATLAB one must use square ones. For example, when m = 2, n = 3 we
have a 2 × 3 matrix such as

4The relational operators are == (equal to), ~= (not equal to), < (less than), > (greater than), <= (less
than or equal to), >= (greater than or equal to). See also Session 1.

2.2 2-dimensional numeric arrays: matrices 13

M =

[
5 7 9
1 −3 −7

]
To enter such an matrix into MATLAB we type it in row by row using the same
syntax as for vectors:

>> A = [5 7 9; 1 -3 -7]

A =
5 7 9
1 -3 -7

Exercise: Enter a 3 x 50 matrix with the first rows containing all integers from 1 Exercise
to 50, the second with all integers from 51 to 100 and the third with all integers
from 101 to 150 (hint: use the colon operator).

There are several commodity functions in MATLAB to create matrices: to
create a zero-matrix of size m x n we can use the zeros function:

>> Z = zeros(10, 20);

Similarly, ones construct a matrix of ones.

>> O = ones(10, 20);

The identity matrix (a zero matrix with ones only on the diagonal) is con-
structed with eye:

>> I = eye(5);

A matrix of random numbers sampled from a standard normal distribution
(therefore with mean = 0 and standard deviation = 1) can be obtained with
randn:

>> R = randn(1000, 1000);

Exercise: Construct a 1000 x 1000 matrix with entries sampled from a normal Exercise
distribution with mean = 25 and standard deviation = 5.

As with vectors, we can do certain arithmetic operations with matrices of
the same size or between a scalar and a matrix of any size. The following
operators are applied element-wise: +, −, .*, ./, .^

The matrix multiplication

A ∗ B = (ABij) =
n

∑
r=0

Ai,rBr,j

between matrices A and B is defined only if the number of columns of A
equals the number of rows of B. The size of a matrix is returned by the function
size:

>> A = randn(3, 2);
>> B = randn(2, 5);
>> C = A * B;
>> size(C)

14 2 NUMERIC ARRAYS

ans =
3 5

>> a = 1 : 3;
>> b = a’;
>> c = a * b, size(c)

c =
14

ans =
1 1

2.2.1 Transpose of a matrix

Transposing a vector changes it from a row to a column vector and vice versa
(see 2.1.5). The extension of this idea to matrices is that transposing inter-
changes rows with the corresponding columns: the 1st row becomes the 1st

column, and so on.

>> A = [1 2 3; 4 5 6];
>> B = A’

B =
1 4
2 5
3 6

2.2.2 Extracting bits of a matrix (slicing)

We may extract sections from a matrix in much the same way as for a vector
(see 2.1.4). Each element of a matrix is indexed according to which row and
column it belongs to. The entry in the ith row and jth column is denoted math-
ematically by Ai,j and, in MATLAB, by A(i, j). So

>> I = [1 2 3; 4 5 6]

I =
1 2 3
4 5 6

>> I(1, 1)

ans =
1

>> I(2, 3) = I(1, 1) + 2 * I(2, 2)

I =
1 2 3
4 5 11

As for vectors, the colon notation is useful for matrices as well:

>> I(1 : 2, 2 : 3)

I =
2 3
5 11

2.2 2-dimensional numeric arrays: matrices 15

The colon operator alone can be used to extract a full row or column:

>> I(:, 1)

I =
1
4

>> I(1, :)

I =
1 2 3

The following returns the whole matrix:

>> I(:, :)

I =
1 2 3
4 5 11

2.2.3 Iterating over arrays

As we saw in the previous session, in MATLAB a for statement has following
syntax:

for i = start_value : step: end_value
statements

end

which means that the counter i iterates over the anonymous array with elements
ranging from start_value to end_value with step step and executes the following
statements as many times as there are elements in the array. The end statement
closes the for block (or for loop).

Most of the other programming languages also use for loops (or equivalent
mechanisms) just to iterate over the elements of an array (for example to find
the values larger than 0). MATLAB is a matrix language, designed for vector
and matrix operations and supports vectorization, which means converting for
loops (wherever possible) to equivalent vector or matrix operations.

Until a few releases ago there was really no alternative to vectorization,
since using for loops to iterate over arrays in MATLAB was so slow to be prac-
tically impossible. In the last few years, the MATLAB interpreter has been in-
crementally rewritten and has sped up execution of for loops by several orders
of magnitude (although it hasn’t quite closed the gap yet). Still, for loops for ar-
ray iteration are against the MATLAB design and should be avoided wherever
possible.

Moreover, which is easier?

>> C = A + B;

or:

>> C = zeros(size(A));
for i = 1 : size(A, 1)
for j = 1 : size(A, 2)
C(i, j) = A(i, j) + B(i, j);

end
end

16 3 STRUCTURE ARRAYS

Exercise: Use the functions tic and toc to compare the execution times of the Exercise
two code snippets above. Set A = B = rand(5000, 5000).

2.3 Multidimensional numeric arrays

You can use the same techniques to create multidimensional arrays that you
use for two-dimensional matrices. Since these arrays are trivial extensions of
the 2D case, they won’t be treated any further.

3 Structure arrays

Like simple structures, structure arrays can be built either by using assignment
statements or by using the struct function.

3.1 Building structure arrays using assignment statements

Let’s look at the patient example we introduced in section 1.5.1.

>> patient.name = ’John Doe’;
>> patient.billing = 127.00;
>> patient.test = 79;

If we want to add another entry to the patient structure (thus turning it into an
array), we can do it like this:

>> patient(2).name = ’Ann Lane’;
>> patient(2).billing = 28.50;
>> patient(2).test = 68;

The patient structure array now has size [1 2]. Note that once a structure array
contains more than a single element, MATLAB does not display individual
field contents when you type the array name. Instead, it shows a summary of
the kind of information the structure contains:

>> patient

patient =
1x2 struct array with fields:

name
billing
test

As you expand the structure, MATLAB fills in unspecified fields with empty
matrices so that:

• All structures in the array have the same number of fields;

• All fields have the same field names.

For example, entering:

>> patient(3).name = ’Alan Johnson’;

3.2 Building structure arrays using the struct function 17

expands the patient array to size [1 3]. Now both patient(3).billing and pa-
tient(3).test contain empty matrices.

Note that field sizes do not have to conform for every element in an ar-
ray5. In the patient example, the name fields can have different lengths, the
test fields can be arrays of different sizes, and so on. For example, although
patient(1).test and patient(2).test contain scalars one can say set patient(3).test
to a 1 x 3-vector:

>> patient(3).test = [85 123 12];

3.2 Building structure arrays using the struct function

You can use different methods for preallocating structure arrays. These meth-
ods differ in the way in which the structure fields are initialized. As an exam-
ple, consider the allocation of a 1-by-3 structure array, weather, with the struc-
ture fields temp and rainfall. Three different methods for allocating such an
array are shown in this table.

Method Syntax
struct weather(1:3)=struct(’temp’,72,’rainfall’,0.0);

struct with repmat weather=repmat(struct(’temp’,72,’rainfall’,0.0),1,3);
struct with cell array syntax weather=struct(’temp’,{68,80,72},’rainfall’,{0.2,0.4,0.0});

Exercise: Try! Exercise

4 Cell arrays

Creating cell arrays in MATLAB is similar to creating arrays of other MATLAB
classes like double, character, etc. The main difference is that, when construct-
ing a cell array, you enclose the array contents or indices with curly braces {
} instead of square brackets []. The curly braces are cell array constructors,
just as square brackets are numeric array constructors. Use commas or spaces
to separate elements and semicolons to terminate each row. For example, to
create a 2-by-2 cell array A, type:

>> A = {[1 4 3; 0 5 8; 7 2 9], ’Anne Smith’; 3+7i, -pi:pi/4:pi};

You also can create a cell array one cell at a time. MATLAB expands the size of
the cell array with each assignment statement:

>> A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
>> A(1,2) = {’Anne Smith’};
>> A(2,1) = {3+7i};
>> A(2,2) = {-pi:pi/4:pi};

A =
[3x3 double] ’Anne Smith’

[3.0000 + 7.0000i] [1x9 double]

You can also use the curly braces on the left-hand size of the assignment:

5To achieve this, the layout of each array element has to be explicitly maintained in memory,
resulting in significant memory overhead. Compare the memory usage (using whos) of a.one =
zeros(1, 50000); vs. b(50000) = struct(’one’, 0);.

18 5 FUNCTION HANDLES

>> B{ 1, 1 } = [1 2 3; 4 5 6];

Curly braces are the standard way to access the content of a given position in
the cell array:

>> A{ 2, 1 }

ans =
3.0000 + 7.0000i

If you assign data to a cell that is outside the dimensions of the current ar-
ray, MATLAB automatically expands the array to include the subscripts you
specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array.

>> A{3,3} = 5

A =
[3x3 double] ’Anne Smith’ []

[3.0000 + 7.0000i] [1x9 double] []
[] [] [5]

The empty square brackets [] indicate an empty cell in the array.
You slice into a cell array with this notation:

A(:, 1)

ans =
[3x3 double]
[3.0000 + 7.0000i]

While using curly braces for slicing will not result in an error, you will see that
it does not behave very intuitively. This is due to the fact that cells have some
advanced behavior in combination with specific functions (for example, deal()
).

5 Function handles

A function handle is a MATLAB value that provides a means of calling a func-
tion indirectly6. You can pass function handles in calls to other functions (often
called function functions). Example: the function fminsearch (for multidimen-
sional unconstrained nonlinear minimization) attempts to minimize a function
fun that accepts an input x and returns a scalar f, the objective function eval-
uated at x. Since fun can in principle be any function, fminsearch expects a
function handle as an input parameter.

x = fminsearch(@myfun, x0)

where myfun is a function file such as:

function f = myfun(x)
f = ... % Compute function value at x

or an anonymous function such as

6In C++ it would be a pointer to a funtion

19

myfun = @(x)sin(x^2)

Anonymous functions give you a quick means of creating simple functions
without having to store your function to a file each time. You can construct an
anonymous function either at the MATLAB command line or in any function
or script. The syntax for creating an anonymous function from an expression
is

fhandle = @(arglist) expr

Exercise: Use fminsearch to find the minimum of the function sin(x) + cos(x) Exercise
in the vicinity of x = 5.

6 User-defined classes

MATLAB allows the creation of ad hoc data types called classes. A class in-
corporates both the description of the data it encapsulates and the methods
(functions) that act on it. We will dedicate most of session 3 to user-defined
classes.

7 References

1. The official MATLAB documentation (html):
http://www.mathworks.com/access/helpdesk/help/helpdesk.html.
Each product also has a pdf version of the documentation.

2. An Introduction to Matlab, Copyright (c) David F. Griffiths 1996, Univer-
sity of Dundee:
http://wiki.bc2.ch/download/attachments/5702724/MatlabNotes.pdf

	Data types
	Logical
	Char
	Numeric: integers
	Numeric: floats
	Real numbers
	Complex numbers
	Special values

	Structures
	Building structures using assignment statements
	Building structures using the struct function
	Accessing structure fields
	Nesting structures

	Cells

	Numeric Arrays
	1-dimensional numeric arrays: vectors
	Row vectors
	Column vectors
	The colon (:) notation
	Extracting bits of a vector (slicing)
	Transposing
	Plotting vectors
	Finding elements in an array

	2-dimensional numeric arrays: matrices
	Transpose of a matrix
	Extracting bits of a matrix (slicing)
	Iterating over arrays

	Multidimensional numeric arrays

	Structure arrays
	Building structure arrays using assignment statements
	Building structure arrays using the struct function

	Cell arrays
	Function handles
	User-defined classes
	References

