
Session 3: Object-oriented programming and
external interfaces Version 1.0.2

Aaron Ponti

Contents

1 Object-oriented programmingr 2
1.1 Introduction to OOP . 2
1.2 Classes in MATLAB . 3
1.3 User-defined classes . 4
1.4 MATLAB classes - key terms . 4
1.5 Handle vs. value classes . 5
1.6 Class folders . 5
1.7 Class building blocks . 5

1.7.1 The classdef block . 6
1.7.2 The properties block . 7
1.7.3 The methods block . 10
1.7.4 The events block . 13

1.8 Example: value vs. handle class 14
1.9 Example: class inheritance . 16
1.10 Example: events . 17
1.11 More extensive example: a polynomial class 19

1.11.1 Creating the needed folder and file 20
1.11.2 Using the DocPolynom Class 20
1.11.3 The DocPolynom Constructor Method 20
1.11.4 Converting DocPolynom Objects to Other Types 22
1.11.5 The DocPolynom disp method 24
1.11.6 Defining the + Operator 25
1.11.7 Overloading MATLAB Functions roots and polyval for

the DocPolynom Class . 25
1.11.8 Complete DocPolynom example 26

1.12 References . 26

2 Interfacing with Java 27
2.1 Java Virtual Machine (JVM) . 27
2.2 The Java classpath . 27

2.2.1 Static classpath . 27
2.2.2 Dynamic classpath . 28

1

2.2.3 Adding JAR packages . 28
2.3 Simplifying Java Class Names . 28
2.4 Creating and using Java objects 29

2.4.1 Constructing Java objects 29
2.4.2 Invoking methods on Java objects 29
2.4.3 Obtaining information about methods 29

2.5 Passing arguments to and from a Java method 31
2.5.1 Conversion of MATLAB data types 31
2.5.2 Conversion of Java return data types 32

2.6 References . 33

3 Interfacing with C/C++ 33
3.1 MEX files . 33
3.2 Overview of Creating a C/C++ Binary MEX-File 33
3.3 Configuring your environment 34
3.4 Using MEX-files to call a C program 34

3.4.1 Create a source MEX file 35
3.4.2 Create a gateway routine 35
3.4.3 Use preprocessor macros 36
3.4.4 Verify Input and Output Parameters 36
3.4.5 Read input data . 37
3.4.6 Prepare output data . 37
3.4.7 Perform Calculation . 37
3.4.8 Build the Binary MEX-File 38

3.5 References . 38

1 Object-oriented programmingr

1.1 Introduction to OOP

Creating software applications typically involves designing how to represent
the application data and determining how to implement operations performed
on that data. Procedural programs pass data to functions, which perform the
necessary operations on the data. Object-oriented software encapsulates data
and operations in objects that interact with each other via the object’s interface.

The MATLAB language enables you to create programs using both proce-
dural and object-oriented techniques and to use objects and ordinary functions
in your programs.

Procedural Program Design In procedural programming, your design fo-
cuses on steps that must be executed to achieve a desired state. You typically
represent data as individual variables or fields of a structure and implement
operations as functions that take the variables as arguments. Programs usu-
ally call a sequence of functions, each one of which is passed data, and then

2

returns modified data. Each function performs an operation or perhaps many
operations on the data.

Object-Oriented Program Design The object-oriented program design in-
volves:

• Identifying the components of the system or application that you want to
build

• Analyzing and identifying patterns to determine what components are
used repeatedly or share characteristics

• Classifying components based on similarities and differences

After performing this analysis, you define classes that describe the objects your
application uses.

Classes and Objects A class describes a set of objects with common charac-
teristics. Objects are specific instances of a class. The values contained in an
object’s properties are what make an object different from other objects of the
same class (an object of class double might have a value of 5). The functions
defined by the class (called methods) are what implement object behaviors that
are common to all objects of a class (you can add two doubles regardless of
their values).

1.2 Classes in MATLAB

In the MATLAB language, every value is assigned to a class. For example,
creating a variable with an assignment statement constructs a variable of the
appropriate class:

>> a = 7;
>> b = ’some string’;
>> whos
Name Size Bytes Class

a 1x1 8 double
b 1x11 22 char

Basic commands like whos display the class of each value in the workspace.
This information helps MATLAB users recognize that some values are charac-
ters and display as text while other values might be double, single, or other
types of numbers. Some variables can contain different classes of values like
cells.

3

1.3 User-defined classes

You can create your own MATLAB classes. For example, you could define a
class to represent polynomials. This class could define the operations typically
associated with MATLAB classes, like addition, subtraction, indexing, display-
ing in the command window, and so on. However, these operations would
need to perform the equivalent of polynomial addition, polynomial subtrac-
tion, and so on. For example, when you add two polynomial objects:

p1 + p2

the plus operation would know how to add polynomial objects because the
polynomial class defines this operation. When you define a class, you overload
special MATLAB functions (plus.m for the addition operator) that are called by
the MATLAB runtime when those operations are applied to an object of your
class.

1.4 MATLAB classes - key terms

MATLAB classes use the following words to describe different parts of a class
definition and related concepts.

• Class definition — Description of what is common to every instance of a
class.

• Properties — Data storage for class instances

• Methods — Special functions that implement operations that are usually
performed only on instances of the class

• Events — Messages that are defined by classes and broadcast by class
instances when some specific action occurs

• Attributes — Values that modify the behavior of properties, methods,
events, and classes

• Listeners — Objects that respond to a specific event by executing a call-
back function when the event notice is broadcast

• Objects — Instances of classes, which contain actual data values stored in
the objects’ properties

• Subclasses — Classes that are derived from other classes and that inherit
the methods, properties, and events from those classes (subclasses fa-
cilitate the reuse of code defined in the superclass from which they are
derived).

• Superclasses — Classes that are used as a basis for the creation of more
specifically defined classes (i.e., subclasses).

• Packages — Folders that define a scope for class and function naming

4

1.5 Handle vs. value classes

There are two kinds of MATLAB classes—handle classes and value classes.

• Handle classes create objects that reference the data contained. When you
copy a handle object, MATLAB copies the handle, but not the data stored
in the object properties. The copy refers to the same data as the original
handle. If you change a property value on the original object, the copied
object reflects the same change.

• Value classes make copies of the data whenever the object is copied or
passed to a function. MATLAB numeric types are value classes.

The kind of class you use depends on the desired behavior of the class instances
and what features you want to use. Use a handle class when you want to
create a reference to the data contained in an object of the class, and do not
want copies of the object to make copies of the object data. For example, use
a handle class to implement an object that contains information for a phone
book entry. Multiple application programs can access a particular phone book
entry, but there can be only one set of underlying data. The reference behavior
of handles enables these classes to support features like events, listeners, and
dynamic properties. Use value classes to represent entities that do not need to
be unique, like numeric values. For example, use a value class to implement
a polynomial data type. You can copy a polynomial object and then modify
its coefficients to make a different polynomial without affecting the original
polynomial. In section 1.8 we will see an example comparison between a value
and a handle class.

1.6 Class folders

There are two basic ways to specify classes with respect to folders:

• Creating a single, self-contained class definition file in a folder on the
MATLAB path. The name of the file must match the class (and construc-
tor) name and must have the .m extension. The class is defined entirely
in this file.

• Distributing a class definition to multiple files in an @ folder inside a path
folder. Only one class can be defined in a @ folder.

In addition, package folders (which always begin with a “+” character) can
contain multiple class definitions, package-scoped functions, and other pack-
ages. A package folder defines a new name space in which you can reuse class
names. Use the package name to refer to classes and functions defined in pack-
age folders (for example, packagefld1.ClassNameA(), packagefld2.packageFunction()).

1.7 Class building blocks

The basic components in the class definition are blocks describing the whole
class and specific aspects of its definition.

5

1.7.1 The classdef block

The classdef block contains the class definition within a file that starts with the
classdef keyword and terminates with the end keyword.

classdef className
...

end

The classdef block contains the class definition. The classdef line is where you
specify:

• Class attributes

Class attributes modify class behavior in some way. Assign values to
class attributes only when you want to change their default value. No
change to default attribute values:

classdef className
...

end

One or more attribute values assigned:

classdef (attribute1 = value,...) className
...

end

• Superclasses

To define a class in terms of one (simple inheritance) or more other classes
(multiple inheritance) by specifying the superclasses on the classdef line:

classdef className < superClass1Name & superClass2Name
...

end

A handle class inherits from the class handle (i.e. it has the class handle as
superclass):

classdef handleClassName < handle
...

end

In section 1.9 we will see and example of class inheritance.

The classdef block contains the properties, methods, and events subblocks.

6

Class attributes Possible attributes for classes are:

• Hidden (logical, default is false): if true, the class does not appear in the
output of MATLAB commands or tools that display class names;

• InferiorClasses (cell, default is {}): use this attribute to establish a prece-
dence relationship among classes;

• ConstructOnLoad (logical, default is false): if true, MATLAB calls the class
constructor when loading an object from a MAT-file. Therefore, you must
implement the constructor so it can be called with no arguments without
producing an error;

• Sealed (logical, default is false): if true, this class can not be subclassed.

1.7.2 The properties block

The properties block (one for each unique set of attribute specifications) con-
tains property definitions, including optional initial values.

Properties encapsulate the data that belongs to instances of classes. Data
contained in properties can be public, protected, or private. This data can be a
fixed set of constant values, or it can be dependent on other values and calcu-
lated only when queried. You control these aspects of property behaviors by
setting property attributes and by defining property-specific access methods.

The properties block starts with the properties keyword and terminates
with the end keyword.

classdef className
properties
...

end
...

end

You can control aspects of property definitions in the following ways:

• Specifying a default value for each property individually

• Assigning attribute values on a per block basis

• Defining methods that execute when the property is set or queried

There are two basic approaches to initializing property values:

• In the property definition — MATLAB evaluates the expression only once
and assigns the same value to the property of every instance.

classdef className
properties
PropertyName % No default value assigned
PropertyName = ’some text’;
PropertyName = sin(pi/12); % Expression returns default value

end
end

7

Evaluation of property default values occurs only when the value is first
needed, and only once when MATLAB first initializes the class. MATLAB
does not reevaluate the expression each time you create a class instance.

• In the class constructor (see section 1.7.3) — MATLAB evaluates the as-
signment expression for each instance, which ensures that each instance
has a unique value.

To assign values to a property from within the class constructor, reference
the object that the constructor returns (the output variable obj):

classdef MyClass
properties
PropertyOne

end
methods
function obj = MyClass(intval)

obj.PropertyOne = intval;
end

end
end

All properties have attributes that modify certain aspects of the property’s be-
havior. Specified attributes apply to all properties in a particular properties
block. For example:

classdef className
properties
PropertyName % No default value assigned
PropertyName = sin(pi/12); % Expression returns default value

end
properties (SetAccess = private, GetAccess = private)
Stress
Strain

end
end

In this case, only methods in the same class definition can modify and query
the Stress and Strain properties. This restriction exists because the class defines
these properties in a properties block with SetAccess and GetAccess attributes
set to private.

You can define methods that MATLAB calls whenever setting or querying
a property value (see next section). Define property set access or get access
methods in methods blocks that specify no attributes and have the following
syntax:

methods
function value = get.PropertyName(object)
...

end
function obj = set.PropertyName(obj,value)
...

end
end

8

MATLAB does not call the property set access method when assigning the de-
fault value specified in the property’s definition block. Moreover, if a handle
class defines the property, the set access method does not need to return the
modified object (see also section 1.8).

Property attributes Possible attributes for properties are:

• AbortSet (logical, default is false): if true, and this property belongs to a
handle class, then MATLAB does not set the property value if the new
value is the same as the current value. This approach prevents the trig-
gering of property PreSet and PostSet events.

• Abstract (logical, default is false): if true, the property has no implementa-
tion, but a concrete subclass must redefine this property without Abstract
being set to true.

• Access (enumeration, default is ’public’):

– public: unrestricted access;
– protected: access from class or derived classes;
– private: access by class members only.
– use Access to set both SetAccess and GetAccess to the same value.

Query the values of SetAccess and GetAccess directly (not Access).

• Constant (logical, default is false): set to true if you want only one value
for this property in all instances of the class:

– subclasses inherit constant properties, but cannot change them;
– constant properties cannot be Dependent;
– setAccess is ignored.

• Dependent (logical, default is false): if false, property value is stored in
object. If true, property value is not stored in object. The set and get
functions cannot access the property by indexing into the object using
the property name. MATLAB does not display in the command window
the names and values of Dependent properties that do not define a get
method (scalar object display only).

• GetAccess: see Access

• GetObservable (logical, default is false): if true, and it is a handle class
property, then you can create listeners for access to this property. The
listeners are called whenever property values are queried.

• Hidden (logical, default is false): determines whether the property should
be shown in a property list (e.g., Property Inspector, call to set or get,
etc.). MATLAB does not display in the command window the names and
values of properties whose Hidden attribute is true or properties having
protected or private GetAccess.

9

• SetAccess: see Access

• SetObservable (logical, default is false): if true, and it is a handle class
property, then you can create listeners for access to this property. The
listeners are called whenever property values are modified.

• Transient (logical, default is false): if true, property value is not saved
when object is saved to a file.

1.7.3 The methods block

The methods block (one for each unique set of attribute specifications) contains
function definitions for the class methods. The methods block starts with the
methods keyword and terminates with the end keyword.

classdef className
...
methods
...

end
...

end

Methods are functions that implement the operations performed on objects of a
class. Methods, along with other class members support the concept of encap-
sulation—class instances contain data in properties and class methods operate
on that data. This allows the internal workings of classes to be hidden from
code outside of the class, and thereby enabling the class implementation to
change without affecting code that is external to the class. Methods have ac-
cess to private members of their class including other methods and properties.
This enables you to hide data and create special interfaces that must be used to
access the data stored in objects.

There are specialized kinds of methods that perform certain functions or
behave in particular ways:

• Ordinary methods are functions that act on one or more objects and return
some new object or some computed value. These methods are like ordi-
nary MATLAB functions that cannot modify input arguments. Ordinary
methods enable classes to implement arithmetic operators and computa-
tional functions. These methods require an object of the class on which
to operate.

• Constructor methods are specialized methods that create objects of the
class. A constructor method must have the same name as the class and
typically initializes property values with data obtained from input argu-
ments. The class constructor method must return the object it creates.

• Destructor methods are called automatically when the object is destroyed,
for example if you call delete(object) or there are no longer any references
to the object.

10

• Property access methods enable a class to define code to execute whenever
a property value is queried or set.

• Static methods are functions that are associated with a class, but do not
necessarily operate on class objects. These methods do not require an
instance of the class to be referenced during invocation of the method,
but typically perform operations in a way specific to the class.

• Conversion methods are overloaded constructor methods from other classes
that enable your class to convert its own objects to the class of the over-
loaded constructor. For example, if your class implements a double method,
then this method is called instead of the double class constructor to con-
vert your class object to a MATLAB double object.

• Abstract methods serve to define a class that cannot be instantiated itself,
but serves as a way to define a common interface used by a number of
subclasses. Classes that contain abstract methods are often referred to as
interfaces.

The constructor method has the same name as the class and returns an ob-
ject. You can assign values to properties in the class constructor. Terminate all
method functions with an end statement.

classdef ClassName
...
methods
function obj = ClassName(arg1,arg2,...) % Constructor
obj.Prop1 = arg1;
...

end
function normalMethod(obj,arg1,...)
...

end
end
methods (Static = true) % A static
function staticMethod(arg1,...) % method is a
... % class method

end
end

end

MATLAB differs from languages like C++ and Java in that there is no special
hidden class instance (e.g. the this object) passed to all methods. You must pass
an object of the class explicitly to the method. The left most argument does not
need to be the class instance, and the argument list can have multiple objects.

You can define class methods in files that are separate from the class def-
inition file. To use multiple files for a class definition, put the class files in a
folder having a name beginning with the @ character followed by the name of
the class. Ensure that the parent folder of the @-folder is on the MATLAB path.
To define a method in a separate file in the class @-folder, create the function
in a separate file, but do not use a method block in that file. Name the file with
the function name, as with any function.

11

You must put the following methods in the classdef file, not in separate
files:

• Class constructor

• Delete method

• All functions that use dots in their names, including:

– Converter methods that convert to classes contained in packages,
which must use the package name as part of the class name

– Property set and get access methods

If you specify method attributes for a method that you define in a separate file,
include the method signature in a methods block in the classdef block. For
example, the following code shows a method with Access set to private in the
methods block. The method implementation resides in a separate file. Do not
include the function or end keywords in the methods block, just the function
signature showing input and output arguments.

classdef ClassName
...
% In a methods block, set the method attributes
% and add the function signature
methods (Access = private)
output = myFunc(obj,arg1,arg2)

end
end

In a file named myFunc.m, in the @ClassName folder, define the function:

function output = myFunc(obj,arg1,arg2)
...

end

Method attributes Possible attributes for methods are:

• Abstract (logical, default is false): if true, the method has no implemen-
tation. The method has a syntax line that can include arguments, which
subclasses use when implementing the method:

– subclasses are not required to define the same number of input and
output arguments. However, subclasses generally use the same sig-
nature when implementing their version of the method;

– the method can have comments after the function line;

– the method does not contain function or end keywords, only the
function syntax (e.g., [a,b] = myMethod(x,y))

• Access (enumeration, default is ’public’): determines what code can call
this method

12

– public: unrestricted access;

– protected: access from methods in class or derived classes;

– private: access by class methods members only (not from subclasses).

• Hidden (logical, default is false): when false, the method name shows
in the list of methods displayed using the methods or methodsview com-
mands. If set to true, the method name is not included in these listings.

• Sealed (logical, default is false): tf true, the method cannot be redefined
in a subclass. Attempting to define a method with the same name in a
subclass causes an error.

• Static (logical, default is false): set to true to define a method that does not
depend on an object of the class and does not require an object argument.
You must use the class name to call the method: classname.methodname

1.7.4 The events block

The events block (one for each unique set of attribute specifications) contains
the names of events that this class declares. Please mind that only handle
classes can define and use events.

The events blocks starts with the events keyword and terminates with the
end keyword.

classdef className
...
events
...

end
...

end

To define an event, you declare a name for the event in the events block. Then
one of the class methods triggers the event using the notify method, which is
method inherited from the handle class. Only classes derived from the handle
class can define events. For example, the following class:

• Defines an event named StateChange

• Triggers the event using the notify method (inherited from handle).

classdef className < handle % Subclass handle
...
events % Define an event called StateChange
StateChange

end
...
methods
function upDateGUI(obj)
...
% Broadcast notice that StateChange event has occurred

13

notify(obj,’StateChange’);
end

end
end

Any number of objects can be listening for the StateChange event to occur.
When notify executes, MATLAB calls all registered listener callbacks and passes
the handle of the object generating the event and an event structure to these
functions. To register a listener callback, use the addlistener() method of the
handle class.

addlistener(eventObj,’StateChange’,@myCallback)

In section 1.10 we will see an example of handle class using events to notify
changes to its properties.

Event attributes Possible attributes for events are:

• Hidden (logical, default is false): if true, event does not appear in list of
events returned by events function (or other event listing functions or
viewers).

• ListenAccess (enumeration, default is ’public’): determines where you can
create listeners for the event:

– public: unrestricted access;

– protected: access from methods in class or derived classes;

– private: access by class methods only (not from derived classes)

• NotifyAccess (enumeration, default is ’public’): determines where code
can trigger the event:

– public: any code can trigger event;

– protected: can trigger event from methods in class or derived classes;

– private: can trigger event by class methods only (not from derived
classes)

1.8 Example: value vs. handle class

We will now see a few example classes to get familiar with the concepts dis-
cussed so far. We will write our first class both as a value and as a handle class
to pinpoint the differences. The class Counter implements a simple counter
that can be incremented and queried for its current value:

classdef Counter
properties (SetAccess = protected, GetAccess = public)
value

end

14

methods
function obj = Counter(val) % Constructor

obj.value = val;
end
function obj = increment(obj) % The method increment

obj.value = obj.value + 1; % returns the object
end
function value = get.value(obj)

value = obj.value;
end
function display(obj)

disp([’Value = ’, num2str(obj.value)]);
end

end
end

The class CounterHandle has the exact same functionality than Counter, but is
implemented as a handle class.

classdef CounterHandle < handle
properties (SetAccess = protected, GetAccess = public)
value

end
methods
function obj = CounterHandle(val) % Constructor
obj.value = val;

end
function increment(obj) % The method increment
obj.value = obj.value + 1; % does not return

end % the object
function value = get.value(obj)
value = obj.value;

end
function display(obj)
disp([’Value = ’, num2str(obj.value)]);

end
end

end

One immediate difference between the classes is that the methods of the handle
class change the actual object (in place), while the methods of the value classes
always changes a copy of it: to update the object, one has to assign the modified
copy back to the original object.

c = Counter(0);
c = c.increment() % or: c = increment(c);
Value = 1

d = CounterHandle(0);
d.increment() % or: increment(d);
Value = 1

for i = 1 : 5
c.increment(); % We do not assign the

end % result back to c
c

15

Value = 1 % Value is still 1!

for i = 1 : 5
d.increment();

end
d
Value = 6 % Value is now 6

1.9 Example: class inheritance

Imagine that we are now told we need a universal counter that can both incre-
ment and decrement its internal value. We could add a decrement() method to
either Counter or CounterHandle as defined in the previous section, but this
would mean that we lost the original Counter (that can only increment). We
could also create a new class called UniversalCounter that contains all methods
of, say, CounterHandle with the additional decrement() method, but this would
be a useless repetition of code: UniversalCounter would be an almost identical
copy of CounterHandle with one additional method1.

A more elegant solution is to have our new class UniversalCounter inherit
from CounterHandle.

classdef UniversalCounter < CounterHandle
methods
function obj = UniversalCounter(val) % UniversalCounter constructor
obj = obj@CounterHandle(val); % calls the CounterHandle constructor

end
function decrement(obj) % Our new decrement() method
obj.value = obj.value - 1;

end
end

end

Our new UniversalCounter has all methods and properties of the base class
CounterHandle plus the new decrement() method. Inheriting from a class al-
lows us to just implement the differences between the base class and the desired
final class.

Notice that the UniversalCounter constructor must call the CounterHandle
constructor and pass the expected input parameter val: failing to do so results
in an error when the base object is constructed. Calling the base constructor
explicitly is not needed if this does not take any input parameters (MATLAB
will call it transparently with no parameters).

Notice also that since the new decrement() method modifies the value prop-
erty declared in the base class, the inheriting class must explicitly be given

1Even for very small classes this duplication is not desirable: imagine you create a large number
of derivative classes in a way similar to our UnversalCounter example: not only would the total
amount of code increase significantly: if you wanted to make a minor structural change to classes
(or fix a bug), you would have to change them all, whereas with inheritance modifying just the base
class would propagate the changes automatically to all the derived classes. As a rule of thumb, try
to avoid code duplication in any case!

16

permission to do so. By setting the SetAccess attribute to protected in Coun-
terHandle, we allow any class that inherits from CounterHandle to modify the
property. If we set SetAccess to private in CounterHandle, the UniversalCounter
would have only been allowed to increment the value, but not decrement it!
This is easily explainable by the fact that the increment() method is defined in
CounterHandle (which can obviously access its own properties), whereas the
decrement() method is defined in UniversalCounter, which has to be given per-
mission to modify value.

e = UniversalCounter(10);
e.increment() % The increment() method is implemented in CounterHandle (and inherited)
e.decrement() % The decrement() method is implemented in UniversalCounter
e.decrement()
e
Value = 9

Finally, notice an important characteristic of inheritance:

class(e)
ans =
UniversalCounter
>> isa(e, ’UniversalCounter’)
ans =

1
>> isa(e, ’CounterHandle’)
ans =

1
>> isa(e, ’Counter’)
ans =

0

Class inheritance builds an is-a relationship between classes. If you define a
class Employee that inherits from a class Person, you can say than an Em-
ployee is a Person. This is true also for our UniversalCounter, which is both
an UniversalCounter and a CounterHandle (but is not a Counter).

1.10 Example: events

In this example, we will write a class to convert temperature from Celsius to
Fahrenheit and vice versa. There are plenty of ways to implement this kind of
functionality: here we will use events.

classdef Converter < handle

% Direct access to the properties allowed
properties (Access = public)
% Temperatures in Celsius and Fahrenheit
tC, tF

end

% Define events that can be triggered: access is public
events (ListenAccess = public, NotifyAccess = public)
changedTC, changedTF

17

end

methods
% Constructor
function obj = Converter()
% Set listeners
addlistener(obj, ’changedTC’, @convertCtoF);
addlistener(obj, ’changedTF’, @convertFtoC);

% Set reasonable starting values
% This will trigger the changedTC event and update tF
obj.tC = 0;

end
% Setters
% The events will be triggered only if the properties change,
% this prevents a cascade of events being generated
function set.tC(obj, value)
obj.tC = value;
obj.notify(’changedTC’);

end

function set.tF(obj, value)
obj.tF = value;
obj.notify(’changedTF’);

end

function display(obj)
fprintf(1, ...
[’Current temperature: %.2f Celsius corresponding ’, ...
’to %.2f Fahrenheit.\n’], obj.tC, obj.tF);

end
end

methods (Access = private)
function convertCtoF(obj, evnt)
obj.tF = (obj.tC * 9 / 5) + 32;

end
function convertFtoC(obj, evnt)
obj.tC = (obj.tF - 32) * 5 / 9;

end
end

end

This class can be used as follows:

c = Converter()
Current temperature: 0.00 Celsius corresponding to 32.00 Fahrenheit.

Instantiating a Converter objects sets a reasonable initial temperature of 0 de-
grees Celsius. Temperatures can then be changed by directly setting the prop-
erties tC and tF.

c.tC = 25
Current temperature: 25.00 Celsius corresponding to 77.00 Fahrenheit.

c.tF = 100
Current temperature: 37.78 Celsius corresponding to 100.00 Fahrenheit.

18

Obviously, when one of the two temperatures are changed by the user, the
other one should be updated accordingly. In our example, this is done by no-
tifying the change in the two set.tC and set.tF methods: the notify() function
(inherited from the handle class) creates an event.

obj.notify(’changedTC’);

In the constructor we added listeners for the changedTC and changedTF events,
and we assigned the convertCtoF() and convertFtoC() callbacks to be invoked
whenever the listener would capture the changedTC and changedTF events.

When the user sets a new temperature tC, this is what happens:

c.tC = 25
→set.tC is called
→the event changedTC is generated
→the listener captures the changedTC event and calls the convertCtoF() callback
→convertCtoF() sets the new value for tF
→set.tF is called
→the event changedTF is generated
→the listener captures the event changedTF and calls the convertFtoC() callback
→convertFtoC() sets the new value for tC which is identical to the previous
→no new events are generated, and the cascade of events is stopped

One could argue that using events to update one temperature when the other
is changed is an overkill: indeed, a simple function call to convertCtoF() from
set.tC() and, correspondingly, a call to convertFtoC() from set.tF() would obtain
the same effect and avoid recalculating tC from tF after tF has just been updated
from tC.

So why bothering creating events, then? The decision to notify an event
when something changes within a class uncouples the class to the use its clients
will make of it. An user interface that uses the Converter class could add its
own listeners to the events generated by the class and react to the changedTC
and changedTF events (since access to them is public) transparently from the
Converter class. Every object that adds listeners for these events will be no-
tified when the temperature changes. This makes the class reusable by new
clients without any additional modification to the class itself2.

1.11 More extensive example: a polynomial class

This example implements a class to represent polynomials in the MATLAB
language. A value class is used because the behavior of a polynomial object
within the MATLAB environment should follow the copy semantics of other
MATLAB variables. This example is taken from the official Object-Oriented
Programming documentation but omits some of the more advanced (and not
so relevant) details. For the complete example, see the references.

This class overloads a number of MATLAB functions, such as roots, polyval,
diff, and plot so that these function can be used with the new polynomial object.

2The class does not even need to know that those clients exist!

19

1.11.1 Creating the needed folder and file

To use the class, create a folder named @DocPolynom and save DocPolynom.m to
this folder. The parent folder of @DocPolynom must be on the MATLAB path.

1.11.2 Using the DocPolynom Class

The following examples illustrate basic use of the DocPolynom class: we will
see how to create a DocPolynom object, how to find its roots and how to add
two DocPolynom objects together.

We will start by creating two DocPolynom objects: note that the argument to
the constructor function contains the polynomial coefficients for our polyno-
mials f (x) = x3 − 2x− 5 and g(x) = 2x4 + 3x2 + 2x− 7.

p1 = DocPolynom([1 0 -2 -5])
p1 =

x^3 - 2*x - 5
p2 = DocPolynom([2 0 3 2 -7])
p2 =

2*x^4 + 3*x^2 + 2*x - 7

The DocPolynom disp method displays the polynomial in MATLAB syntax.
We can find the roots of the polynomial using the overloaded roots method.

roots(p1)
ans =

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

We can also add the two polynomials p1 and p2.
The MATLAB runtime calls the plus method defined for the DocPolynom

class when you add two DocPolynom objects.

p1 + p2
ans =

2*x^4 + x^3 + 3*x^2 - 12

The sections that follow describe the implementation of the methods illustrated
here, as well as some implementation details.

1.11.3 The DocPolynom Constructor Method

The following function is the DocPolynom class constructor, which is in the file
@DocPolynom/DocPolynom.m:

function obj = DocPolynom(c)
% Construct a DocPolynom object using the coefficients supplied
if isa(c,’DocPolynom’)
obj.coef = c.coef;

else
obj.coef = c(:).’;

end
end

20

The coefficients are stored in the coef property of the DocPolynom class:

classdef DocPolynom % DocPolynom is a value class

properties
coef

end

methods
function obj = DocPolynom(c)
% Construct a DocPolynom object using the coefficients supplied

...

Constructor Calling Syntax You can call the DocPolynom constructor method
with two different arguments:

• Input argument is a DocPolynom object — If you call the constructor func-
tion with an input argument that is already a DocPolynom object, the
constructor returns a new DocPolynom object with the same coefficients
as the input argument. The isa function checks for this situation. This is
a so-called copy constructor.

• Input argument is a coefficient vector — If the input argument is not a
DocPolynom object, the constructor attempts to reshape the values into a
vector and assign them to the coef property.

The coef property set method restricts property values to doubles. See next
section for a discussion of the property set method.

Removing Irrelevant Coefficients MATLAB software represents polynomi-
als as row vectors containing coefficients ordered by descending powers. Zeros
in the coefficient vector represent terms that drop out of the polynomial. Lead-
ing zeros, therefore, can be ignored when forming the polynomial.

Some DocPolynom class methods use the length of the coefficient vector to
determine the degree of the polynomial. It is useful, therefore, to remove lead-
ing zeros from the coefficient vector so that its length represents the true value.

The DocPolynom class stores the coefficient vector in a property that uses a
set method to remove leading zeros from the specified coefficients before set-
ting the property value.

function obj = set.coef(obj,val)
% coef set method
if ~isa(val,’double’)
error(’Coefficients must be of class double’)

end
ind = find(val(:).’~=0);
if ~isempty(ind)
obj.coef = val(ind(1):end);

else
obj.coef = val;

end
end

21

Example use An example use of the DocPolynom constructor is the statement:

p = DocPolynom([1 0 -2 -5])
p =

x^3 - 2*x -5

This statement creates an instance of the DocPolynom class with the specified
coefficients. Note how class methods display the equivalent polynomial us-
ing MATLAB language syntax. The DocPolynom class implements this display
using the disp and char class methods.

1.11.4 Converting DocPolynom Objects to Other Types

The DocPolynom class defines two methods to convert DocPolynom objects to
other classes:

• double — Converts to standard MATLAB numeric type so you can per-
form mathematical operations on the coefficients.

• char — Converts to string; used to format output for display in the com-
mand window

The DocPolynom to Double Converter The double converter method for the
DocPolynom class simply returns the coefficient vector, which is a double by
definition:

function c = double(obj)
% DocPolynom/Double Converter
c = obj.coef;

end

For the DocPolynom object p:

p = DocPolynom([1 0 -2 -5])

the statement:

c = double(p)

returns:

c =
1 0 -2 -5

which is of class double:

class(c)
ans =

double

22

The DocPolynom to Character Converter The char method produces a char-
acter string that represents the polynomial displayed as powers of an indepen-
dent variable, x. Therefore, after you have specified a value for x, the string
returned is a syntactically correct MATLAB expression, which you can evalu-
ate.

The char method uses a cell array to collect the string components that make
up the displayed polynomial.

The disp method uses char to format the DocPolynom object for display. Class
users are not likely to call the char or disp methods directly, but these methods
enable the DocPolynom class to behave like other data classes in MATLAB.

Here is the char method.

function str = char(obj)
% Create a formatted display of the polynom
% as powers of x
if all(obj.coef == 0)
s = ’0’;

else
d = length(obj.coef)-1;
s = cell(1,d);
ind = 1;
for a = obj.coef;
if a ~= 0;
if ind ~= 1

if a > 0
s(ind) = {’ + ’};
ind = ind + 1;

else
s(ind) = {’ - ’};
a = -a;
ind = ind + 1;

end
end
if a ~= 1 || d == 0

if a == -1
s(ind) = {’-’};
ind = ind + 1;

else
s(ind) = {num2str(a)};
ind = ind + 1;
if d > 0
s(ind) = {’*’};
ind = ind + 1;

end
end

end
if d >= 2
s(ind) = {[’x^’ int2str(d)]};
ind = ind + 1;

elseif d == 1
s(ind) = {’x’};
ind = ind + 1;

end
end
d = d - 1;

23

end
end
str = [s{:}];

end

Evaluating the Output If you create the DocPolynom object p:

p = DocPolynom([1 0 -2 -5]);

and then call the char method on p:

char(p)

the result is:

ans =
x^3 - 2*x - 5

The value returned by char is a string that you can pass to eval() after you have
defined a scalar value for x. For example: x = 3;

x = 3;
eval(char(p))
ans =

16

1.11.5 The DocPolynom disp method

To provide a more useful display of DocPolynom objects, this class overloads
disp in the class definition.

This disp method relies on the char method to produce a string representa-
tion of the polynomial, which it then displays on the screen.

function disp(obj)
% DISP Display object in MATLAB syntax
c = char(obj);
if iscell(c)
disp([’ ’ c{:}])

else
disp(c)

end
end

The statement:

p = DocPolynom([1 0 -2 -5])

creates a DocPolynom object. Since the statement is not terminated with a semi-
colon, MATLAB calls the disp method of the DocPolynom object to display the
output on the command line:

p =
x^3 - 2*x - 5

24

1.11.6 Defining the + Operator

If either p or q is a DocPolynom object, the expression

p + q

generates a call to a function @DocPolynom/plus.
The following function redefines the plus (+) operator for the DocPolynom

class:

function r = plus(obj1,obj2)
% Plus Implement obj1 + obj2 for DocPolynom
obj1 = DocPolynom(obj1);
obj2 = DocPolynom(obj2);
k = length(obj2.coef) - length(obj1.coef);
r = DocPolynom([zeros(1,k) obj1.coef]+[zeros(1,-k) obj2.coef]);

end

Here is how the function works:

• Ensure that both input arguments are DocPolynom objects so that expres-
sions such as

p + 1

that involve both a DocPolynom and a double, work correctly.

• Access the two coefficient vectors and, if necessary, pad one of them with
zeros to make both the same length. The actual addition is simply the
vector sum of the two coefficient vectors.

• Call the DocPolynom constructor to create a properly typed result.

1.11.7 Overloading MATLAB Functions roots and polyval for the DocPoly-
nom Class

The MATLAB language already has several functions for working with poly-
nomials that are represented by coefficient vectors. You can overload these
functions to work with the new DocPolynom class.

In the case of DocPolynom objects, the overloaded methods can simply ap-
ply the original MATLAB function to the coefficients (i.e., the values returned
by the coef property).

This section shows how to implement the following MATLAB functions.

Defining the roots function The DocPolynom roots method finds the roots of
DocPolynom objects by passing the coefficients to the overloaded roots function:

function r = roots(obj)
% roots(obj) returns a vector containing the roots of obj
r = roots(obj.coef);

end

25

If p is the following DocPolynom object:

p = DocPolynom([1 0 -2 -5]);

then the statement:

roots(p)

gives the following answer:

ans =
2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

Defining the polyval function The MATLAB polyval function evaluates a
polynomial at a given set of points. The DocPolynom polyval method simply
extracts the coefficients from the coef property and then calls the MATLAB ver-
sion to compute the various powers of x:

function y = polyval(obj,x)
% polyval(obj,x) evaluates obj at the points x
y = polyval(obj.coef,x);

end

The following code evaluates the polynom p = x3 for x = −2 : 0.1 : 2 and
plots it.

p = DocPolynom([1 0 0 0])
p =

x^3
x = -2:0.1:2;
y = polyval(p, x);
plot(x, y);

1.11.8 Complete DocPolynom example

The complete DocPolynom example class can be found in the MATLAB docu-
mentation code:

edit ([docroot ’/techdoc/matlab_oop/examples/@DocPolynom/DocPolynom.m’]);

1.12 References

• http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_oop/ug_intropage.html

• http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matlab_oop.pdf

26

2 Interfacing with Java

2.1 Java Virtual Machine (JVM)

Every installation of MATLAB software includes Java Virtual Machine (JVM)
software, so that you can use the Java interpreter via MATLAB commands, and
you can create and run programs that create and access Java objects3.

The MATLAB Java interface enables you to:

• Access Java API (application programming interface) class packages that
support essential activities such as I/O and networking. For example,
the URL class provides convenient access to resources on the Internet.

• Access third-party Java classes

• Easily construct Java objects in MATLAB workspace

• Call Java object methods, using either Java or MATLAB syntax

• Pass data between MATLAB variables and Java objects

MATLAB can run Java code in the form of .class or .jar files.

2.2 The Java classpath

MATLAB loads Java class definitions from files that are on the Java class path.
The class path is a series of file and directory specifications that MATLAB soft-
ware uses to locate class definitions. When loading a particular Java class,
MATLAB searches files and directories in the order they occur on the class path
until a file is found that contains that class definition. The search ends when the
first definition is found. The Java class path consists of two segments: the static
path and the dynamic path. MATLAB loads the static path at startup. If you
change the path you must restart MATLAB. You can load and modify the dy-
namic path at any time using MATLAB functions. MATLAB always searches
the static path before the dynamic path. You can view these two path segments
using the javaclasspath function.

2.2.1 Static classpath

To see which classpath.txt file is currently being used by your MATLAB envi-
ronment, use the which function:

which classpath.txt

To edit either the default file or the copy in your own directory, type:

edit classpath.txt

3To use a different JVM than the one that comes with MATLAB, you now can set the MAT-
LAB_JAVA system environment variable to the path of your JVM software.

27

2.2.2 Dynamic classpath

The dynamic class path can be loaded any time during a MATLAB software
session using the javaclasspath function. You can define the dynamic path (us-
ing javaclasspath), modify the path (using javaaddpath and javarmpath), and re-
fresh the Java class definitions for all classes on the dynamic path (using clear
with the keyword java) without restarting MATLAB.

2.2.3 Adding JAR packages

In contrast to the static and dynamic classpaths, where the directory containing
the .class file is added to the path, to make the contents of a JAR file available
for use in MATLAB, specify the full path, including full file name, for the JAR
file. You can also put the JAR file on the MATLAB path. For example, to make
available the JAR file e:\java\classes\utilpkg.jar, add the following file specifi-
cation to your static class path (i.e. the classpath.txt file):

e:\java\classes\utilpkg.jar

or use the javaaddpath function to add it to the dynamic path:

javaaddpath e:\java\classes\utilpkg.jar

2.3 Simplifying Java Class Names

Your MATLAB commands can refer to any Java class by its fully qualified
name, which includes its package name. For example, the following are fully
qualified names:

• java.lang.String

• java.util.Enumeration

A fully qualified name can be rather long, making commands and functions,
such as constructors, cumbersome to edit and to read. You can refer to classes
by the class name alone (without a package name) if you first import the fully
qualified name into MATLAB. The import command has the following forms:

import pkg_name.* % Import all classes in package
import pkg_name1.* pkg_name2.* % Import multiple packages
import class_name % Import one class
import % Display current import list
L = import % Return current import list

MATLAB adds all classes that you import to a list called the import list. You
can see what classes are on that list by typing import, without any arguments.
Your code can refer to any class on the list by class name alone. When called
from a function, import adds the specified classes to the import list in effect for
that function.

28

2.4 Creating and using Java objects

You create a Java object in the MATLAB workspace by calling one of the con-
structors of that class. You then use commands and programming statements
to perform operations on these objects. You can also save your Java objects to
a MAT-file and, in subsequent sessions, reload them into MATLAB.

2.4.1 Constructing Java objects

You construct Java objects in the MATLAB workspace by calling the Java class
constructor, which has the same name as the class. For example, the following
constructor creates a myDate object:

myDate = java.util.Date

MATLAB displays information similar to:

myDate =
Thu Aug 23 12:58:54 EDT 2007

2.4.2 Invoking methods on Java objects

To call methods on Java objects, you can use the Java syntax:

object.method(arg1,...,argn)

or the MATLAB syntax4:

method(object, arg1,...,argn)

In the following example, myDate is a java.util.Date object, and getHours and
setHours are methods of that object.

myDate = java.util.Date;
myDate.setHours(3)
myDate.getHours // Java syntax
ans =

3
getHours(myDate) // MATLAB syntax
ans =

3

2.4.3 Obtaining information about methods

MATLAB offers several ways to help obtain information related to the Java
methods you are working with. You can request a list of all of the methods that
are implemented by any class. The list might be accompanied by other method
information such as argument types and exceptions. You can also request a
listing of every Java class that you loaded into MATLAB that implements a
specified method.

4There is an alternative syntax, which makes use of the javaObject() and javaMethod() func-
tions: myDate = javaObject(’java.util.Date’); h = javaMethod(’getHours’, myDate);

29

Tab key The simplest way is to type the name of a Java object on the MATLAB
console followed by ’.’ and press the Tab key.

The methodsview function A more complete way is by using the methodsview
function5:

methodsview java.util.Date // Syntax 1
methodsview(’java.util.Date’) // Syntax 2
myDate = java.util.Date;
methodsview(myDate) // Syntax 3

A new window appears, listing one row of information for each method in the
class.

Each row in the window displays up to six fields of information describing
the method:

• Qualifiers (i.e. method type qualifiers): abstract, synchronized, ...

• Return Type (i.e. type returned by the method): void, java.lang.String, ...

• Name (i.e. method name): getHours, addActionListener, ...

• Arguments (i.e. types of arguments passed to method): boolean, java.lang.Object,
...

5The methodsview function can also be used for MATLAB classes.

30

• Other (i.e. other relevant information): throws java.io.IOException, ...

• Inherited From (i.e. parent of the specified class): java.awt.MenuComponent,
...

The methods function The methods function returns information on meth-
ods of MATLAB and Java classes. You can use any of the following forms of
this command.

methods class_name
methods class_name -full
n = methods(’class_name’)
n = methods(’class_name’,’-full’)

Use methods without the ’-full’ qualifier to return the names of all the methods
(including inherited methods) of the class. Names of overloaded methods are
listed only once. With the ’-full’ qualifier, methods returns a listing of the method
names (including inherited methods) along with attributes, argument lists, and
inheritance information on each. Each overloaded method is listed separately.

For example, display a full description of all methods of the java.awt.Dimension
object.

methods java.awt.Dimension -full

Methods for class java.awt.Dimension:
Dimension(int,int)
Dimension()
Dimension(java.awt.Dimension)
java.lang.Object clone() % Inherited from java.awt.geom.Dimension2D
...

2.5 Passing arguments to and from a Java method

When you make a call to Java in MATLAB code, any MATLAB types you pass
in the call are converted to types native to the Java language. MATLAB per-
forms this conversion on each argument that is passed, except for those argu-
ments that are already Java objects. If data is to be returned by the method
being called, MATLAB receives this data and converts it to the appropriate
MATLAB format wherever necessary.

2.5.1 Conversion of MATLAB data types

MATLAB data, passed as arguments to Java methods, are converted by MAT-
LAB into types that best represent the data to the Java language. The table
below shows all of the MATLAB base types for passed arguments and the Java
base types defined for input arguments. Each row shows a MATLAB type
followed by the possible Java argument matches, from left to right in order of
closeness of the match. The MATLAB types (except cell arrays) can all be scalar
(1-by-1) arrays or matrices. All of the Java types can be scalar values or arrays.

31

2.5.2 Conversion of Java return data types

In many cases, data returned from a Java method is incompatible with the
types operated on in the MATLAB environment. When this is the case, MAT-
LAB converts the returned value to a type native to the MATLAB language.
The following table lists Java return types and the resulting MATLAB types.
For some Java base return types, MATLAB treats scalar and array returns dif-
ferently, as described following the table.

32

2.6 References

• http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f44062.html

• http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/apiext.pdf

3 Interfacing with C/C++

3.1 MEX files

You can call your own C, C++, or Fortran subroutines from the MATLAB com-
mand line as if they were built-in functions. These programs, called binary
MEX-files, are dynamically-linked subroutines that the MATLAB interpreter
loads and executes. MEX stands for “MATLAB executable”. In this course we
won’t discuss Fortran MEX files.

MEX-files have several applications:

• Calling large pre-existing C/C++ and Fortran programs from MATLAB
without rewriting them as MATLAB functions

• Replacing performance-critical routines with C/C++ implementations

The second point has become less critical over the years, with MATLAB be-
coming faster and faster.

A computational routine is the source code that performs functionality you
want to use with MATLAB. For example, if you created a standalone C pro-
gram for this functionality, it would have a main() function. MATLAB commu-
nicates with your MEX-file using a gateway routine. The MATLAB function that
creates the gateway routine is mexfunction(). You use mexfunction() instead of
main() in your source file.

3.2 Overview of Creating a C/C++ Binary MEX-File

To create a binary MEX-file:

• Assemble your functions and the MATLAB API functions into one or
more C/C++ source files.

• Write a gateway function in one of your C/C++ source files.

• Use the MATLAB mex function, called a build script, to build a binary
MEX-file.

• Use your binary MEX-file like any MATLAB function.

33

3.3 Configuring your environment

Before you start building binary MEX-files, select your default compiler. In the
MATLAB console, type:

>> mex -setup

Options files control which compiler to use, the compiler and link command
options, and the runtime libraries to link against.
Using the ’mex -setup’ command selects an options file that is
placed in ~/.matlab/R2011a and used by default for ’mex’. An options
file in the current working directory or specified on the command line
overrides the default options file in ~/.matlab/R2011a.
To override the default options file, use the ’mex -f’ command
(see ’mex -help’ for more information).

The options files available for mex are:
1: /Applications/MATLAB_R2011a.app/bin/gccopts.sh :

Template Options file for building gcc MEX-files
2: /Applications/MATLAB_R2011a.app/bin/mexopts.sh :

Template Options file for building MEX-files via the system ANSI compiler

0: Exit with no changes
Enter the number of the compiler (0-2):
1
/Applications/MATLAB_R2011a.app/bin/gccopts.sh is being copied to
/Users/aaron/.matlab/R2011a/mexopts.sh

**
Warning: The MATLAB C and Fortran API has changed to support MATLAB

variables with more than 2^32-1 elements. In the near future
you will be required to update your code to utilize the new
API. You can find more information about this at:
http://www.mathworks.com/support/solutions/en/data/1-5C27B9/?
solution=1-5C27B9

Building with the -largeArrayDims option enables the new API.

**

Now, MATLAB’s mex is configured to use the selected compiler to build your
MEX-files. We will discuss the Warning message from newer MATLAB ver-
sions below.

3.4 Using MEX-files to call a C program

Suppose you have some C code, called arrayProduct, that multiplies an 1-dimensional
array y with n elements by a scalar value x and returns the results in array z. It
might look something like the following:

void arrayProduct(double x, double *y, double *z, int n)
{
int i;
for (i=0; i<n; i++)
{
z[i] = x * y[i];

}
}

34

If x = 5 and y is an array with values 1.5, 2, and 9, then calling:

arrayProduct(x,y,z,n)

from within your C program creates an array z with the values 7.5, 10, and 45.
The following steps show how to call this function in MATLAB, using a

MATLAB matrix, by creating the MEX-file arrayProduct.

3.4.1 Create a source MEX file

Open MATLAB Editor and copy your code into a new file. Save the file on
your MATLAB path and name it arrayProduct.c. This file is your computational
routine, and the name of your MEX-file is arrayProduct. We will now modify
the code to turn it into a valid (and usable) MEX-file.

3.4.2 Create a gateway routine

At the beginning of the file, add the C/C++ header file:

#include "mex.h"

After the computational routine, add the gateway routine mexFunction6:

/* The gateway function */
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
/* variable declarations here */

/* code here */
}

mexFunction is the entry point for the MEX-file, i.e. what MATLAB will call
when launching your MEX-file. This is currently just a placeholder. We will
now add the content of the gateway function, but before that we will spend a
couple of words on the signature of mexFunction.

void mexFunction(int nlhs, // Number of input parameters
mxArray *plhs[], // Array of pointers to inputs
int nrhs, // Number of output parameters
const mxArray *prhs[]) // Array of pointers to const

// outputs
{ ... }

Input parameters (found in the prhs array) are read-only; do not modify them
in your MEX-file. Changing data in an input parameter can produce undesired
side effects.

The MATLAB language works with only a single object type: the MATLAB
array. All MATLAB variables, including scalars, vectors, matrices, strings, cell

6This example is written in C and in C all variable declarations MUST be at the beginning of
the function. This constraint does not exist in C++.

35

arrays, structures, and objects, are stored as MATLAB arrays. In C/C++, the
MATLAB array is declared to be of type mxArray. The mxArray structure
contains, among other things:

• Its type

• Its dimensions

• The data associated with this array

• If numeric, whether the variable is real or complex

• If sparse, its indices and nonzero maximum elements

• If a structure or object, the number of fields and field names.

3.4.3 Use preprocessor macros

The MX Matrix Library and MEX Library functions use MATLAB preprocessor
macros for cross-platform flexibility. Edit your computational routine to use
mwSize for mxArray size n and index i.

void arrayProduct(double x, double *y, double *z, mwSize n)
{
mwSize i;
for (i=0; i<n; i++)
{
z[i] = x * y[i];

}
}

mwSize replaces int to ensure that mxArrays with more than 232 − 1 elements
can be addressed correctly.

3.4.4 Verify Input and Output Parameters

In this example, there are two input arguments (a matrix and a scalar) and one
output argument (the product). To check that the number of input arguments
nrhs is two and the number of output arguments nlhs is one, put the following
code inside the mexFunction routine:

/* check for proper number of arguments */
if(nrhs!=2)
{
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nrhs",
"Two inputs required.");

}
if(nlhs!=1)
{
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:nlhs",
"One output required.");

}

36

The following code validates the input values:

/* make sure the first input argument is scalar */
if(!mxIsDouble(prhs[0]) ||

mxIsComplex(prhs[0]) ||
mxGetNumberOfElements(prhs[0])!=1)

{
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notScalar",
"Input multiplier must be a scalar.");

}

The second input argument must be a row vector.

/* check that number of rows in second input argument is 1 */
if(mxGetM(prhs[1])!=1) {
mexErrMsgIdAndTxt("MyToolbox:arrayProduct:notRowVector",
"Input must be a row vector.");

}

3.4.5 Read input data

Put the following declaration statements at the beginning of your mexFunction:

double multiplier; /* input scalar */
double *inMatrix; /* 1xN input matrix */
mwSize ncols; /* size of matrix */

Add these statements to the code section of mexFunction:

/* get the value of the scalar input */
multiplier = mxGetScalar(prhs[0]);
/* create a pointer to the real data in the input matrix */
inMatrix = mxGetPr(prhs[1]);
/* get dimensions of the input matrix */
ncols = mxGetN(prhs[1]);

3.4.6 Prepare output data

Put the following declaration statement after your input variable declarations:

double *outMatrix; /* output matrix */

Add these statements to the code section of mexFunction:

/* create the output matrix */
plhs[0] = mxCreateDoubleMatrix(1,ncols,mxREAL);
/* get a pointer to the real data in the output matrix */
outMatrix = mxGetPr(plhs[0]);

3.4.7 Perform Calculation

The following statement executes your function:

/* call the computational routine */
arrayProduct(multiplier,inMatrix,outMatrix,ncols);

37

3.4.8 Build the Binary MEX-File

You can build your MEX-file by typing7:

>> mex arrayProduct.c

If your source file is correct, mex should compile silently. In case something is
wrong, mex will output error messages to the MATLAB console.

Test the MEX-File Type:

s = 5;
A = [1.5, 2, 9];
B = arrayProduct(s,A)

This should output:

B =
7.5000 10.0000 45.0000

Exercise Try the following:

s = 5;
A = [1.5 2; 9 11];
B = arrayProduct(s,A)

What do you get? Where is the mistake?

Exercise Try the following:

s = 3
A = uint8([1, 5, 9]);
B = arrayProduct(s,A)

What do you get? Where is the mistake?

3.5 References

• http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f7667.html

• http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/apiext.pdf

7To enable the new API for arrays with more than 232 − 1 elements, use: mex arrayProduct.c
-largeArrayDims. Soon the new API will be enabled by default and you will not need to specify the
-largeArrayDims option any more.

38

	Object-oriented programmingr
	Introduction to OOP
	Classes in MATLAB
	User-defined classes
	MATLAB classes - key terms
	Handle vs. value classes
	Class folders
	Class building blocks
	The classdef block
	The properties block
	The methods block
	The events block

	Example: value vs. handle class
	Example: class inheritance
	Example: events
	More extensive example: a polynomial class
	Creating the needed folder and file
	Using the DocPolynom Class
	The DocPolynom Constructor Method
	Converting DocPolynom Objects to Other Types
	The DocPolynom disp method
	Defining the + Operator
	Overloading MATLAB Functions roots and polyval for the DocPolynom Class
	Complete DocPolynom example

	References

	Interfacing with Java
	Java Virtual Machine (JVM)
	The Java classpath
	Static classpath
	Dynamic classpath
	Adding JAR packages

	Simplifying Java Class Names
	Creating and using Java objects
	Constructing Java objects
	Invoking methods on Java objects
	Obtaining information about methods

	Passing arguments to and from a Java method
	Conversion of MATLAB data types
	Conversion of Java return data types

	References

	Interfacing with C/C++
	MEX files
	Overview of Creating a C/C++ Binary MEX-File
	Configuring your environment
	Using MEX-files to call a C program
	Create a source MEX file
	Create a gateway routine
	Use preprocessor macros
	Verify Input and Output Parameters
	Read input data
	Prepare output data
	Perform Calculation
	Build the Binary MEX-File

	References

