# Solution to the exercises of Session 1 

Aaron Ponti

- Section 2

You can use lookfor to find medfilt2, std.

- Section 3
$17,148,10,-4$
- Section 4
whos
- Section 5 / 1

The valid variable names are: century_21st, pi (careful: this is already defined in MATLAB!), is_THIS_valid. The following are not valid variable names because they are reserved keywords: for, while. The following are just invalid: 21st_century, hello world.

- Section 5 / 2
ans: most recent answer; eps: spacing of floating point numbers (~ data type/machine floating point precision); $i$ and $j$ : imaginary unit; Inf: arithmetic representation for positive infinity; NaN : arithmetic representation for Not-aNumber, i.e. the solution of $0 / 0 ; p i=3.1415926535897$...
- Section $7 / 1$

The function $\sin$ takes an argument in radians: $\sin (45 / 180 * p i)$

- Section 7 / 2
clear: clear variables and functions from memory; tic and toc: start and read a stopwatch timer; who and whos: list current variables in workspace (short and long form, respectively); format: set output format, try:

```
>> format short
>> 1/3
>> format long
>> 1/3
```


## - Section 8

script1.m:

```
alpha = 33 / 180 * pi;
gamma = 90 / 180 * pi;
beta = pi - alpha - gamma;
a = 8 / sin( gamma ) * sin( alpha )
b}=8/\operatorname{sin}(gamma ) * sin( beta 
```


## - Section 9

## sineTheorem.m:

```
function [ a, b, c, alpha, beta, gamma ] = sineTheorem( c, alphaDegrees )
% Calculate all angles (in radians)
gamma = 90 / 180 * pi;
alpha = alphaDegrees / 180 * pi;
beta = pi - alpha - gamma;
% Now calculate the lengths of sides a and b (we know c)
a = c / sin( gamma ) * sin( alpha );
b = c / sin( gamma ) * sin( beta );
% Return the angles in degrees
alpha = alphaDegrees;
beta = beta / pi * 180;
gamma = gamma / pi * 180;
```

