
Source control with Subversion
A user perspective

Aaron Ponti

http://svnbook.red-bean.com/

What is Subversion?
}  It is a free and open-source version control system
}  It manages files and directories, and the changes made to

them, over time:
}  It’s a “time machine”
}  It allows you to recover older versions of your data or

examine the history of how your data changed
}  It works with any type of files but gives its best with text files

}  We will see later why…

}  It fosters collaboration by allowing various people to
modify and manage the same set of data from their
respective locations
}  Although it can be a perfect tool also for the lone user

Fundamental Subversion concepts
}  Repository

}  The central data store

}  Versioning
}  The full history of a repository

}  Working copy
}  The user’s local version of the repository content

}  Commits
}  The changes published to the repository

}  Revisions
}  The temporal snapshots of the repository

The Subversion repository
}  At the core of Subversion is a repository, which is a central

store of data
}  The repository stores information in the form of a filesystem

tree, a typical hierarchy of files and directory

}  Any number of clients (users) connect to the repository, and
then read or write to these files and folders:
}  By writing data, a client makes the information available to others
}  By reading data, the client receives information from others

}  What makes the Subversion repository special is that it
remembers every change ever written to it (versioning):
}  every change to every file, and even changes to the directory

tree itself, such as the addition, deletion, and rearrangement of
files and directories

}  When a client reads from the repository, it not only sees
the latest version of the file system tree, but it also has
the ability to view all previous states:
}  For example, a client can ask historical questions such as

“What did this directory contain last Wednesday?” and “Who
was the last person to change this file, and what changes did he
make?”

Versioning

Versioning models
}  All version control systems have to solve the same

fundamental problem: how will the system allow users to
share information, but prevent them from accidentally
stepping on each other's feet?

The problem to avoid

The Lock-Modify-Unlock Solution
}  In this model, the repository allows only one person to

change a file at a time: this exclusivity policy is managed
using locks

Sally cannot modify the file until Harry has released the lock

The Copy-Modify-Merge Solution
}  In this model(*), each user's client contacts the project

repository and creates a personal working copy (a local
copy of the repository's files and directories)

}  Users then work simultaneously and independently,
modifying their private copies

}  Finally, the private copies are merged together into a
new, final version

(*) This is the main model used by Subversion. Subversion also supports locking for
those cases where merging or conflict-solving is impossible, e.g. when modifying binary
files (e.g. artwork, sound files, …)

The version control system often assists with
the merging, but ultimately, a human being is
responsible for making it happen correctly!

The Copy-Modify-Merge Solution
}  The copy-modify-merge model may sound a bit chaotic,

but in practice, it runs extremely smoothly
}  Users can work in parallel, never waiting for one

another
}  When they work on the same files, it turns out that most

of their concurrent changes don't overlap at all: conflicts
are infrequent

}  The amount of time it takes to resolve conflicts is usually
far less than the time lost by a locking system

 Communication is the best way to avoid conflicts!

The working copy
}  A Subversion working copy is an ordinary directory tree

on your local system containing a collection of files and
reflecting the content of the repository

}  You can edit the files and directories in your working
copy however you wish

}  After you've made some changes to the files in your
working copy, you commit your changes to the
repository
}  the changes are now visible for the other people working with

you on your project

}  If other people commit their own changes, you will get
them by updating your working copy

Commits and revisions
}  A commit operation publishes changes to any number of files

and directories as a single atomic transaction
}  i.e. Subversion guarantees that a commit sends all changes or none.

}  Each time the repository accepts a commit, this creates a new
state of the filesystem tree, called a revision
}  each revision is assigned a unique natural number, one greater than the

number of the previous revision: unlike most version control systems,
Subversion's revision numbers apply to entire trees, not individual files
→ global revision numbers

The initial revision of a
freshly created repository
is numbered 0 and consists

of nothing but an empty
root directory.

Subversion in action
}  Initial steps:

}  Create a repository
}  Import files
}  Check out to a local working copy

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository

}  Advanced actions:
}  Solve conflicts
}  Create and switch to tags/branches
}  Merge branches

Subversion clients
Client Platform Modality License URL
Subversion Windows,

Mac OS X,
Linux

Command line tool
(and library)

Open source http://subversion.apache.org/

TortoiseSVN Windows Graphical user interface Open source http://tortoisesvn.net/

eSVN Windows,
Mac OS X,
Linux

Graphical user interface Open source http://zoneit.free.fr/esvn/index.php

RapidSVN Windows,
Mac OS X,
Linux

Graphical user interface Open source http://www.rapidsvn.org/index.php/Main_Page

KDESvn Linux (KDE) Graphical user interface Open source http://kdesvn.alwins-world.de/

Subclipse Eclipse Graphical user interface Open source http://subclipse.tigris.org/

SmartSVN Windows,
Mac OS X,
Linux

Graphical user interface Commercial http://www.syntevo.com/smartsvn/index.html

Versions Mac OS X Graphical user interface Commercial http://versionsapp.com/

…

Subversion command-line tool

Subversion is a command-line tool
and requires some typing in the
Windows console!

To get usage information type:
 svn help
or
 svn help <command>
at the prompt

TortoiseSVN, a Windows shell extension

TortoiseSVN adds some
entries to the Windows
Explorer context menu
(i.e. to the “right-click”)

“The coolest Interface to (Sub)Version Control”

Subversion in action
}  Initial steps:

}  Create a repository
}  Import files
}  Check out to a local working copy

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository
}  Advanced actions:

}  Solve conflicts
}  Create and switch to tags/branches
}  Merge branches

~95% of your time

Subversion in action
}  Initial steps:

}  Create a repository → most likely done by IT, we will skip if for now
}  Import files → optional step, we will skip it for now
}  Check out to a local working copy (and inspect it)

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository

}  Advanced actions:
}  Solve conflicts
}  Create tags; create/merge branches; switch to branches
}  Change properties

Subversion repository URLs

}  file://

}  can only be used to access a repository on the local disk; useful to keep a history of your
own documents

}  http:// and https://

}  the repository is on a remote Apache web server and can be accessed from many clients
over the network: this is the most powerful configuration (and what we use at the FMI)

}  svn:// and svn+ssh://

}  the repository is on a remote server and can be accessed from many clients over the
network; svnserve is a simple server bundled with the subversion tools

Check out to a local working copy

First, we create a folder somewhere:
this will be our working copy

Check out to a local working copy

Then, we check out the repository

Check out to a local working copy

We
checkout
trunk;
more to
this later

Latest
version
of all files

svn checkout http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/trunk E:\SubversionCourse\SourceControl_Subversion

To simplify future svn calls, we change to the working directory: cd E:\SubversionCourse\SourceControl_Subversion

Check out to a local working copy

Latest repository revision
(HEAD) is 3

The repository contains following files
and directories in the HEAD revision

Our working copy now has the same content as the repository at its HEAD revision

Check out to a local working copy
}  A checkout can occur at any level in the tree structure of

the repository, and not necessarily at the root level:
}  In fact, it is very common not to check out the root of the

repository: we will discuss this later
}  In analogy, updates and commits can also occur at all levels: for

instance, one can decide to commit just one file

Check out to a local working copy

 means “no local changes”

TortoiseSVN uses little overlay icons to represent the different possible
states of our working copy

Inspect the repository

svn log

We can right-click on our working copy
to query for several pieces of
information about the repository

The log contains
the full history of
our repository

Inspect the repository

List of all changes
(commits)

Message
associated with
the selected
commit

List of all modified (or added,
deleted, …) files and directories

Double-clicking on a file
opens the diff viewer

svn diff demo/accs.h –r2:3

Authors of
the changes

Inspect the repository

This line
was added

TortoiseSVN provides a tool to visualize the changes in a file between any two revisions

Inspect the repository

We can also visualize the whole
content of the repository
(directly from the remote URL)

Inspect the repository

Although not mandatory, it is recommended to create three subfolders branches,
tags and trunk at the root level of the repository (and then check out trunk)

A Subversion convention

}  trunk:
}  main body of development, originating from the start of the project until

the present
}  branches:

}  a branch is a copy of code derived from a certain point in the trunk that
is used for applying major changes to the code while preserving the
integrity of the code in the trunk. If the major changes work according
to plan, they are usually merged back into the trunk
}  In open source projects, major branches that are not accepted into

the trunk by the project stakeholders can become the bases for
forks – e.g., totally separate projects that share a common origin
with other source code

}  tags:
}  a tag is a point in time on the trunk or a branch that you wish to

preserve. The two main reasons for preservation would be that either
this is a major release of the software, or this is the most stable point of
the software before major revisions on the trunk were applied

Inspect the repository (example: HRM)

Latest
development
in trunk

All official
HRM
releases
under tags

Inspect the repository

svn status
svn status –u
svn status -v (displays status for all files, also not modified ones, both local and remote)

(displays status for modified files, both local and remote)
(displays status for local, modified files)

At any time we can query for all
local and remote changes

Inspect the repository

The SourceControlSubversion.pptx file
has been modified remotely since last
update of the (local) working copy

Click here to check the version of
local files against the repository
(i.e. to get the remote changes)

Summary of local changes

Subversion in action
}  Initial steps:

}  Create a repository
}  Import files
}  Check out to a local working copy

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository

}  Advanced actions:
}  Solve conflicts
}  Create and switch to tags/branches
}  Merge branches

Update your working copy first!

svn update

Always work with an
updated working copy!

Update your working copy first!

The SourceControlSubversion.pptx file
on the server was newer than the one
in the working copy and was therefore
updated locally

}  Work on your files: modify them, delete them, add new
ones (for instance, you modify demo\accs.h)

}  TortoiseSVN will inform you that you have local changes
(and mark all relevant files and directories):

Modify your working copy

 This file was modified locally.

Adding new files
}  If you create a new file in the working directory (for

instance, demo\config.h), it won’t automatically be under
version control

}  TortoiseSVN will point this out with a icon:

 This file is new: Subversion does not
know anything about it yet

Adding new files
}  If you want to add the file to Subversion, you have to do

it explicitly:

We add it

svn add demo/config.h

Adding new files
}  Now the file is added:

 The file is added

Deleting files
}  If you want to delete a file from Subversion, you have to

tell Subversion about it:

If you just delete it
in the file explorer,
it will be back on
the next update!

svn delete tests/readme.txt

Reverting changes
}  If you want to discard changes you have made, you can simply revert them:

svn revert demo/main.cpp

Sometimes it is just
easier to restart…

Commit your changes
}  We have now several changes in our working copy:

}  The repository still does not know anything about them!
}  We still have to commit our changes!

Double-clicking on the file will again
show you the changes you have made.

Commit your changes

Until we commit, all changes exist
only in our working copy!

svn commit –m “(1) Added information…”

Commit your changes

Important: always describe the changes you have made!

List of modifications: double-click to see the differences

Commit your changes

Summary of all
committed changes

The commit created a new revision (7) on the repository

As a general principle, Subversion tries to be as flexible as possible. One special kind of flexibility is the
ability to have a working copy containing files and directories with a mix of different working revision
numbers.
Commits and updates are independent (e.g. a commit does not run an update) and therefore all files
which were not modified will have a different revision in your working copy after a commit than the
committed ones.
This ensure consistency between working copy and repository for some operations

The working copy has mixed revisions until a new update is run.

Subversion in action
}  Initial steps:

}  Create a repository
}  Import files
}  Check out to a local working copy

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository

}  Advanced actions:
}  Solve conflicts
}  Create and switch to tags/branches
}  Merge branches

Harry updates and Subversion merges

Resolving conflicts

Working on the same file A concurrently, Harry and Sally could potentially create
conflicting versions of A (A’ and A’’). The source control system will assist in solving
these conflicting situations. We will now see how

Harry’s commit fails Harry commits Sally updates

Both update

Sally commits

Both modify locally

No
conflicts!

1 2 5 6

3 4 7 8

At revision 10.

File merging with no conflicts

At revision 10.

Harry Sally

Harry and Sally update their working copy (at revision 10) and start working
on the same file (tests/test.m) at the same time (communication!)

File merging with no conflicts

Still at revision 10.

Harry

Commits revision 11.

Sally

Sally makes a change to
the file and commits
revision 11

Harry in the
meanwhile is
working on the
same file and
does not update
his working
copy

File merging with no conflicts

Still at revision 10.

Harry

At revision 11.

Sally

Sally’s changes are
missing in Harry’s
working copy

Harry makes a
change to the file
but his copy is
out-of-sync with
the repository!
He commits

File merging with no conflicts

Harry is not allowed to commit an out-dated version of a file

Therefore, Harry updates his working copy

File merging with no conflicts

Since the changes were not overlapping, Subversion merged
Harry’s file with the copy from the repository and informed Harry
about it. The merged file contains both Sally’s and Harry’s changes. It
is responsibility of Harry now (possibly with the help of Sally) to
check that test.m still behaves as it should!

Pay attention to these messages!

Resolving conflicts

Still at revision 10.

Harry

At revision 11.

Sally

This is were Sally made
her changes as well!

This time,
Harry’s changes
to the outdated
file overlap with
those commited
by Sally!
He commits

Resolving conflicts

Again, Harry is not allowed to commit an out-dated version of a file

Harry updates his working copy

Resolving conflicts

This time Subversion did not merge the
changes because they were overlapping!

Harry must resolve the conflict

Resolving conflicts

Subversion generates a list of files to
help Harry resolve the conflict

This is the merged version (in
diff notation) containing all
changes

This is revision 11 of the file

This is revision 12 of the file

Resolving conflicts

Conflicts can be edited
manually, but TortoiseSVN
provides a tool for it

2

Resolving conflicts

The conflicting part has not been resolved yet

2

2

Resolving conflicts

Harry decides that his change is better than Sally’s and (after
informing Sally about it!) uses his block to resolve the conflict

2

2

The merged version that Harry will commit.

Resolving conflicts

The conflicting part has now been resolved

Do not forget to save!

2

Resolving conflicts

Now we inform
Subversion that the
conflict was solved

svn resolve tests\test.m

Resolving conflicts

At this point the conflict has been solved locally:
the resolved file test.m must still be committed!

Subversion in action
}  Initial steps:

}  Create a repository
}  Import files
}  Check out to a local working copy

}  Basic work cycle:
}  Update your local copy
}  Modify your local copy

}  Add or delete files and directories
}  See (your) changes
}  Revert changes

}  Commit your local changes to the repository

}  Advanced actions:
}  Solve conflicts
}  Create and switch to tags/branches
}  Merge branches

Creating and switching to branches
}  Branching, tagging, and merging are concepts common

to almost all version control systems
}  A branch is a line of development that begins is life as a

copy and then exists independently of another line, yet
still shares a common history if you look far enough back
in time.

Creating and switching to branches
}  A tag is just a “snapshot” of a project in time
}  For Subversion, there is absolutely no difference between

a branch and a tag (and both are very similar to a
revision), it is only a matter of convention:
}  Once created, a tag should not be touched ever again
}  A branch is a parallel development line and is usually (but not

always!) merged back to trunk

Creating and switching to branches

As we said, there is no
difference between a
tag and a branch for
Subversion

Creating and switching to branches

Branching is done
directly in the
repository: no
later commit
needed!

Choose what
should be copied

Explain why you are
making a branch/tag Check here to

switch your
working copy
to the created
branch

We copy from trunk
to branches/
branch_demo

Creating and switching to branches

}  Subversion did two things for us:
}  it created the branch (and a new revision) in the repository;
}  it switched our working copy to the branch

}  Now all our commits will go to the branch, and no longer to trunk!

svn copy http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/trunk
 http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/branches/branch_demo

svn switch http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/branches/branch_demo

Creating and switching to branches

Here is our branch.
In the beginning it will
be identical to trunk

Merging branches back to trunk
}  Once the parallel development is finished, it is time to

merge the branch back to trunk
}  It is important to notice that most likely other developers

have worked on and modified trunk since the branch was
created
}  this means that you most likely had to merge some selected

changes (e.g. bug fixes) from trunk to the branch!
}  this incremental merging is not mandatory, but makes the final

“merging back” less formidable

}  Merging might involve some conflict resolution!

Merging branches back to trunk

First we switch our working copy
back to trunk.
This will give us the latest trunk
revision

Merging branches back to trunk

Back to trunk!

Even if it say “Switch to Branch / Tag” you can obviously switch to trunk as well…

Merging branches back to trunk

Now we are ready to merge the
branch back to trunk

}  Subversion lets you do quite a few things with your
branches:

Merging branches back to trunk

This will be the
option to choose
as soon as the
Subversion server
is updated…

This is the old way
to merge
branches…

Newer versions
of Subversion
remember when
branches are
created and can
use this
information to
merge them back

Merging branches back to trunk

URL of our
branch

We can get
the range to
merge from
the log

What do we
put here?

Merging branches back to trunk

On revision 17 we created the branch. We
want to merge back from revision 18. The
latest (HEAD) is 19

If you are wondering why here it says
“Revision: 16”: this is when the folder for
the branch was created. The actual copy
was performed in revision 17

Merging branches back to trunk

This is our range
(from 18 to
HEAD, which is
revision 19)

Merging branches back to trunk

One should always test before one actually
merges (this is called a “dry run”)

svn merge http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/branches/branch_demo
 http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/trunk --dry-run

Merging branches back to trunk

No errors! We can proceed with the actual merge

Merging branches back to trunk

One can merge from
the working copy to
the repository or
directly from
repository to
repository.

Merging branches back to trunk

The output is the same, but this time we really merged!

svn merge http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/branches/branch_demo
 http://source.fmi.ch/svn/FAIM/Courses/SourceControl_Subversion/trunk

But wait… We haven’t finished yet!

Merging branches back to trunk

Since we merged into the
working copy, we still have to
commit to the repository!

Merging branches back to trunk

As usual, we describe what we are committing

svn commit -m “Merged back branch branches/branch_demo to trunk (revisions 18-19).”

And done, our branch was successfully merged!

A tiny excursus in the
admin perspective

… if you want.

Creating a repository on the local disk

}  Creating a repository is straightforward
}  Making it available to clients can go from very simple to quite

complicated:

Comparison of subversion server options

}  Here we will just see how to create a repository for
personal use on the local machine

Create a folder to host the
repository on the local machine
(in general, pick a better name
than repo)

Creating a repository on the local disk

Creating a repository on the local disk

svnadmin create E:\SubversionCourse\repo

Then just ask TortoiseSVN to
create the repository for you

}  We now create the initial repository layout

Creating a repository on the local disk

In another folder (e.g. C:\tmp\project) we create the usual trunk, branches,
and tags subfolders

Creating a repository on the local disk

We import C:\tmp\project
(with its subfolders).

Creating a repository on the local disk

By importing, we create the initial trunk,
branches, and tags structure in the
repository

Notation!!!

We must use
file:///
for a local
repository

Creating a repository on the local disk

A newly created repository has revision number 0. By importing the trunk,
branches, tags subfolder we created revision 1

Checking out a repository

Now we check out trunk to our
working copy
(e.g. E:\SubversionCourse\myProject)

Checking out a repository

And we are ready to work!

This is the path to
trunk in our local
repository.

