
Session 4: Statistical hypothesis testing

Aaron Ponti and Dimosthenis Gaidatzis

In this session we will only scratch the surface of the theory of hypothesis testing.
Instead, we will play with a few selected examples to get familiar with the approach to
statistical testing in MATLAB.

1 What is a p-value?

From Wikipedia:

In statistical hypothesis testing, the p-value is the probability of ob-
taining a result at least as extreme as the one that was actually observed,
given that the null hypothesis is true.

This requires one additional definition (again from Wikipedia):

In statistics, a null hypothesis (H0) is a plausible hypothesis (scenario)
which may explain a given set of data. A null hypothesis is tested to deter-
mine whether the data provide sufficient reason to pursue some alternative
hypothesis (H1). When used, the null hypothesis is presumed sufficient
to explain the data unless statistical evidence, in the form of a hypothesis
test, indicates otherwise.

As an example, suppose someone tells you that currently the average price of a liter of
regular unleaded gas in Canton Basel Stadt is CHF 1.94. How could you determine the
truth of the statement?

You could try to find prices at every gas station in Basel, Riehen and Bettingen.
That approach would be definitive, but it could be time-consuming, costly, or even
impossible.

A simpler approach would be to find prices at a small number of randomly selected
gas stations, and then compute the sample average. Sample averages differ from one
another due to chance variability in the selection process. Suppose your sample average
comes out to be CHF 1.97. Is the CHF 0.03 difference an artifact of random sampling
or significant evidence that the average price of a liter of gas is in fact greater than CHF
1.94?

Hypothesis testing is a statistical method for making such decisions.

2 Hypothesis test terminology

We formulate the statistical test for the study in section 1 as follows:
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• Null hypothesis H0: the difference between the mean of the sample and the mean
of the distribution1 (µmeasured −µall) is 0.

• Alternative hypothesis H1: the difference between the mean of the sample and
the mean of the distribution (µmeasured−µall) is different from 0.

This is a so-called two-tailed test: either one mean can be larger than the other. One
could also test for µmeasured > µall (this is a right-tail test) or for µmeasured < µall (this is
a left-tail test).

• The p-value is the probability, assuming that the null hypothesis H0 is true2, to
see a difference between the means as large as the one computed from the sample
to the (hypothetical) distribution mean.

• The significance level of a test is a threshold of probability α agreed to before
the test is conducted. A typical value of α is 0.05. If the p-value of a test is
less than α, the test rejects the null hypothesis. (The significance level α can be
interpreted as the probability of rejecting the null hypothesis when it is actually
true: a type I error. A type II error is the probability β of not rejecting the null
hypothesis when it is actually false).

• Results of hypothesis tests are often communicated with a confidence interval.
A confidence interval is an estimated range of values with a specified probability
of containing the true population value of a parameter.

Practical application of a statistical test boils down to essentially applying one or more
mathematical operations (tests) to the data under study to obtain a p-value that will
either reject or fail to reject the null hypothesis H0. The choice of these mathematical
operations is however dependent on several factors, and indeed statistics books will
usually contain decision tables that will help in the selection of the appropriate test to
perform. Essential factors to consider when selecting the appropriate statistical proce-
dure are (i) the type of the data, i.e. whether one tries to compare categorical to cate-
gorical, continuous to continuous, or categorical to continuous variables; (ii) whether
the test involves computing a correlation coefficient/measure of association between
the variables; (iii) whether the study involves one or more samples; (iv) the size of
the sample(s); (v) the probability distributions from which the samples are drawn (if
known); (vi) if the samples are dependent or independent.

In chapters 3 and 4 we will discuss some selected examples. In chapter 5 we will
look at a completely different approach to hypothesis testing.

3 Difference in location
(Categorical vs. continuous variables)

3.1 Normal distribution: the t-test for two independent samples
If we could measure the sepal and petal widths and lengths of all Iris flowers in the
world, we would have a definitive answer on whether setosa sepals are (at least on
average!) smaller or larger than versicolor sepals. Let’s imagine that we only have the

1All gas stations in Canton Basel Stadt.
2This is crucial for the correct interpretation of a p-value!
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Figure 1: Distribution of the sepal lengths for setosa and virginica

sample of 50 measurements per species from out Fisher Iris dataset. How do we test
for significant difference?

Let’s start by creating our dataset (see also Session 3):

>> load fisheriris
>> NumObs = size( meas, 1 );
>> NameObs = strcat( { ’Obs’ }, num2str( ( 1 : NumObs )’, ’%d’ ) );
>> n = nominal( species );
>> iris = dataset( { n, ’species’ }, ...

{ meas, ’SL’, ’SW’, ’PL’, ’PW’ }, ’ObsNames’, NameObs );

We will compare the sepal lengths of setosa and versicolor.
First, we will plot the histograms of the sepal lengths of the two species for visual

inspection.

>> figure;
>> subplot( 2, 1, 1 );
>> hist( iris.SL( iris.species == ’setosa’ ) );
>> axis( [ 4 8 0 15 ] );
>> xlabel( ’Setosa sepal lengths’ ); ylabel( ’Frequency’ );
>> subplot( 2, 1, 2 );
>> hist( iris.SL( iris.species == ’versicolor’ ) );
>> axis( [ 4 8 0 15 ] );
>> xlabel( ’Versicolor sepal lengths’ ); ylabel( ’Frequency’ );

Can we say from the histograms in Figure 1 that the sepal lengths of the two species
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are significantly different3? There seems to be quite some overlap: is the apparent shift
just due to artifacts of the sampling? (After all, we only have 50 measurements per
species.)

We formulate our statistical test as follows:

• Null hypothesis H0: the difference between the means of the two samples
(µsetosa−µversicolor) is 0 (two-tailed test).

• Alternative hypothesis H1: the difference between the means of the two samples
(µsetosa−µversicolor) is different from 0.

We will use the t-test for the comparison. The t-test is relatively robust with respect
to departures from the normality assumption. In practice, the best way to assess the
normality of the sample is visually by using the normplot function (as you should have
done for the sepal lengths of setosa and versicolor as an exercise in Session 3), but one
can also test for normality with the Lilliefors’ composite goodness-of-fit test (lillietest
function):

>> lillietest( iris.SL( iris.species == ’setosa’ ) )

ans =
0

>> lillietest( iris.SL( iris.species == ’versicolor’ ) )

ans =
0

If the lillietest returns 0, it indicates that the null hypothesis ("the data are normally
distributed") cannot be rejected at the 5% significance level (meaning the sample is
normally distributed4).

We can use the function ttest2 to test if the two samples come from normal distri-
butions with unknown but equal variances and the same mean, against the alternative
that the means are unequal5.

>> [ h, p, ci ] = ttest2( ...
iris.SL( iris.species == ’setosa’ ), ...
iris.SL( iris.species == ’versicolor’ ) )

h =
1

p =
8.9852e-18

ci =
-1.1054 -0.7546

3We won’t make any assumptions on which mean seems to be larger. We will just test for difference.
4At the same confidence level.
5ttest2 assumes equal variance by default.
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The null hypothesis is rejected (h = 1) at the default 5% significance level (p < α):
the samples do not come from the same underlying distribution. Indeed the confidence
interval on the difference of the means does not include the hypothesized value of 0.

If the assumption of equal variance of the underlying distributions is not valid, one
can instruct the ttest2 function to perform the test assuming unequal variances (this is
known as the Behrens-Fisher problem) as follows:

>> [ h, p, ci ] = ttest2( ...
iris.SL( iris.species == ’setosa’ ), ...
iris.SL( iris.species == ’versicolor’ ), ...
0.05, ’both’, ’unequal’ )

h =
1

p =
3.7467e-17

ci =
-1.1057 -0.7543

The additional parameters are the significance level (0.05, which was implicit in the
previous call), the type of test (’both’, that means perform a two-tailed test, again
implicit) and the variance type ’unequal’, which informs ttest2 not to expect the same
underlying distribution variance.

Even with unequal variances the null hypothesis is rejected (h = 1) at the default 5%
significance level (p < α). The result of the two tests is basically the same, suggesting
that the difference between the means is so significant, that the simplification of equal
variances does not play any role. Exercise: The ttest2 function can also return the Exercise
estimated variances. What are they?

3.2 Unknown distribution: the Wilcoxon test (rank-based)
If it is obvious from the normal probability plot (normplot) or from the Lilliefors’ com-
posite goodness-of-fit test (lillietest) that your samples are not normally distributed,
you can still test them for difference in location. One widely used test is the Wilcoxon
rank sum test. The Wilcoxon rank sum test performs a two-sided rank sum test of the
hypothesis that two independent samples come from distributions with equal medians.
(The Wilcoxon rank sum test is equivalent to another known test, the Mann-Whitney
U test.)

Let’s create two samples from a Poisson distribution with λ1 = 3 and λ2 = 6:

>> sample1 = poissrnd( 3, 40, 1 ); % 40 random values
>> sample2 = poissrnd( 6, 60, 1 ); % 60 random values

Let’s take a look at the histograms (Figure 2):

>> figure;
>> subplot( 2, 1, 1 );
>> hist( sample1, min( sample1 ):max( sample1 ) );
>> axis( [ 0 12 0 15 ] );
>> xlabel( ’lambda = 3’ ); ylabel( ’Frequency’ );
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Figure 2: Distribution of Poisson random samples

>> subplot( 2, 1, 2 );
>> hist( sample2, min( sample2 ):max( sample2 ) );
>> axis( [ 0 12 0 15 ] );
>> xlabel( ’lambda = 6’ ); ylabel( ’Frequency’ );

We can perform the Wilcoxon rank sum test with the function ranksum:

>> [ p, h ] = ranksum( sample1, sample2, ’alpha’, 0.05 )

p =
1.9128e-09

h =
1

The null hypothesis H0 is rejected at the 0.05 significance level: the two samples are
derived from different distributions.

4 Association between variables

One sometimes needs to know whether two variables of a given entity are associated.
In other words, if we know the first variable (e.g. the height) of an entity (a human
being), does this help us say something about the second variable (e.g. the weight) of
the same entity?
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Depending on whether the variables are categorical (e.g. ’methylated’ vs. ’non
methylated’) or continuous (height in centimeters), the association can be summarized
in a table (the contingency table) or measured by correlation, respectively.

4.1 Categorical vs. categorical variables
Assume that we know DNA methylation status and histone acetylation status for a
number of promoters, summarized in a table as follows (this sample data is made-up
and does not reflect biology):

>> DNAmet = [ 1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 ];
>> H3acet = [ 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 ];

A value of 1 means that there is either a methylation or an acetylation, 0 means there
is none. We can create a so-called contingency table like this:

>> table = crosstab( DNAmet, H3acet )6

table =
9 1
2 5

The table is to be interpreted like this:
No H3acet H3acet

No DNAMet 9 1
DNAMet 2 5

A contingency table can be used to express the relationship (or the independence)
between two or more variables. Based on this table, we can reformulate our question
of association between DNA methylation and histone acetylation more generally as:
“Is there a correlation among DNA methylation and histone acetylation?” This is ex-
pressed by the comparison of the proportions of the various columns over the rows.
So we can also reformulate the question as: Is there a difference between the rows (or
columns) of the contingency table?” Intuitively, we would say yes: If DNA is unmethy-
lated (first row in the contingency table), then it is also more likely for the histones not
to be acetylated.

The statistical significance of the difference between the variables can be tested
with a Pearson’s chi-square test, a G-test or Fisher’s exact test, provided the entries in
the table represent a random sample from the population contemplated in the null hy-
pothesis. The chi-square test should not be used if any of the entries in the contingency
table are lower than 5 or the total number of measurement is lower than 20, since in
this case the probabilities of the chi-square distribution may not provide an accurate
estimate of the underlying sampling distribution. In this case, the Fisher’s exact test
should be used. We can perform the Fisher’s exact test like this:

>> [ pr, pl, p ] = fisherextest( 9, 1, 2, 5 );
>> pr

p =
0.9994

6The crosstab function also returns chi-square and p-value, but for such a small number of measurements
the used test is far from optimal.
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The four input parameters of the fisherextest7 function are the elements of the contin-
gency matrix, one row after the other. The fisherextest function can only be used for
2x2 contingency matrices. It returns up to three p-values for three different alternative
hypotheses. Testing for independence is analogous to testing for zero correlation (two-
tailed test). The other two alternative hypotheses would be testing for positive correla-
tion (right tail) of the two variables (measurements mostly top-left and bottom-right),
or for negative correlation (left tail, meaurements mostly top-right and bottom-left),
respectively. An important note: in a statistic test one should first decide what hypoth-
esis one wants to test and then decide which p-value is relevant! Let’s test for positive
correlation of DNA methylation and H3 acetylation since the measurement seem to
concentrate on the top-left and bottom-right cells.

The null hypothesis H0 that there is positive correlation between the two variables
of interest cannot be rejected at the α = 0.05 level.

4.2 Continuous vs. continuous variables
Correlation indicates the strength and direction of a linear relationship between two
random variables and thus refers to their departure from independence. Depending
on the underlying distribution, different approaches to calculate the correlation coeffi-
cients should be used.

4.2.1 Normal distribution: the Pearson correlation

The Pearson correlation coefficient makes use of the covariance of the variables of
interest and their standard deviations and thus requires the samples to be drawn from
a normal distribution. In MATLAB, the Pearson correlation can be calculated with the
corr function.

% Create two independent, normally-distributed random samples
>> x = normrnd( 10, 5, 100, 1 );
>> y1 = normrnd( 10, 5, 100, 1 );

% Create a new sample y2 that correlates with x
>> y2 = x + y1;

% Plot them side by side (see figure 3)
>> subplot( 1, 2, 1 ); plot( x, y1, ’*’ );
>> subplot( 1, 2, 2 ); plot( x, y2, ’*’ );

% Calculate the Pearson correlation coefficient
>> [r p] = corr( x, y1, ’type’, ’Pearson’ )

r =
-0.0473

p =
0.6405

7This function is not part of the Statistics Toolbox: it can be downloaded from
http://www.cis.hut.fi/Opinnot/T-61.5110/exercises/fisherextest.m.
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Figure 3: Non-correlating (left) vs. correlating (right) normally-distributed random
samples.
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Figure 4: Non-correlating (left) vs. correlating (right) exponentially-distributed ran-
dom samples.

>> [r p] = corr( x, y2, ’type’, ’Pearson’ )

r =
0.7114

p =
1.0841e-16

4.2.2 Unknown distribution: the Spearman correlation (rank-based)

The Spearman rank correlation coefficient (or Spearman’s rho) often denoted by the
Greek letter ρ or as rs, is another measure of correlation that does not make any as-
sumptions about the distribution of the variables. The same function corr that we used
to calculate the correlation coefficient in section 4.2.1 can be used to calculate the
Spearman coefficient as follows:

% Create two independent, exponentially-distributed random samples
>> x = exprnd( 10, 100, 1 );
>> y1 = exprnd( 10, 100, 1 );
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% Create a new sample y2 that correlates with x
>> y2 = x + y1;

% Plot them side by side (see figure 4)
>> subplot( 1, 2, 1 ); plot( x, y1, ’*’ );
>> subplot( 1, 2, 2 ); plot( x, y2, ’*’ );

% Calculate the Spearman correlation coefficient
>> [r p] = corr( x, y1, ’type’, ’Spearman’ )

r =
0.0718

p =
0.4769

>> [r p] = corr( x, y2, ’type’, ’Spearman’ )

r =
0.6304

p =
0

5 Monte Carlo methods
Imagine we collected two measurement samples from our experiments and wanted to
test for a difference in their medians. Unfortunately, we happen to have no idea of what
is the underlying distribution from which we sampled. We have seen earlier how can
we test for normality and how we could test even in case of unknown distributions. But
we can also write our own test, using a Monte Carlo approach.

Monte Carlo methods are a class of computational algorithms that rely on repeated
random sampling to compute their results. Monte Carlo methods are often used when
simulating physical and mathematical systems in particular when it is infeasible or
impossible to compute an exact result with a deterministic algorithm. While their ap-
plication in statistical testing has already been proposed around 1950, the high compu-
tational costs have long prevented their use. Monte Carlo methods have the potential to
completely replace all classical statistical tests for hypothesis testing. The advantage
of most classical tests, however, is that they are (much) faster to calculate.

Before we test our two samples for difference, we start with a little game to get
familiar with the Monte Carlo methods.

Let’s consider a square of side a and a circle inscribed into it (with radius a/2). The
ratio between the area of the circle and the area of the square is:( a

2

)2
π

a2 =
π

4

If we now imagined to drop little stones uniformly over the area of the square, the
fraction f of stones that would fall within the circle’s area vs. stones that fall within
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the square but outside of the circle should be approximately f = π/4 (like the ratio of
the areas). This means that from this ratio we can estimate the value of π simply as
π = 4 f .

We can use the rand function to sample randomly from a standard uniform distri-
bution on the open interval (0,1). Let’s start generating (x,y) coordinates for N = 10
stones randomly between −a/2 and a/2 (the value of a is not relevant):

>> N = 10; a = 5;
>> pos = a .* rand( N, 2 ) - a / 2

pos =
1.5736 -1.7119
2.0290 2.3530

-1.8651 2.2858
2.0669 -0.0731
0.6618 1.5014

-2.0123 -1.7906
-1.1075 -0.3912
0.2344 2.0787
2.2875 1.4610
2.3244 2.2975

Let’s calculate the fraction of stones that fell within the circle:

f = numel(find(sqrt(pos(:,1).^2+pos(:,2).^2)<(a/2)))/N

f =
0.9000

We said that π≈ 4 f :

Pi = 4 * f

Pi =
3.6000

This is quite a lousy approximation. But let’s try incrementally increasing the num-
ber of stones and see how our estimation of π converges (by the way, the real π is
3.141592653589793...):

N Pi 100% · (Pi−π)/π

10 3.6000 +14.59%
102 2.9200 −7.05%
103 3.1800 +1.22%
104 3.1552 +0.43%
105 3.1452 +0.11%
106 3.1425 +0.03%
107 3.1414 −0.01%
108 3.1416 +0.00%

But let’s now go back to our two samples and the difference between their medians.
We will write a function that implements the following algorithm:
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1: For two samples x and y:
2: Calculate the real difference in medians
3: Repeat lines (4-6) N (many) times:
4: Randomize x and y
5: Calculate the difference of the medians of the randomized samples
6: Count +1 if more extreme than real difference
7: Calculate p value based on count

This pseudocode makes sense if you remember the meaning of a p-value, namely the
probability of observing by chance a measure as extreme as the real measure. This is
literally what the function does: it simulates many chance observations (starting at line
3), and counts the number of times such a chance observation is more extreme than the
real observation (line 6). The p-value can easily be calculated from this simulation: it
is the number of time we saw a difference larger than the real one divided by the total
number of trials.

The crucial point in the function is the pooling and resampling of the input vectors.
This is our hypothesis H0: by doing this we hypothesize that the two samples come
from the same underlying distribution and that the differences we see are entirely ex-
plained by the sampling variability. If we are right, the calculated p-value will exceed
the significance level. If we are wrong, we will have to reject H0.

The real code8 could look like this:

function p = testDiffMedian( x, y, N )

% Calculate the real difference
realDiff = abs( median( x ) - median( y ) );

% Pool all measurements from both samples
allMeas = [ x y ];

% Initialize counter and lengths
count = 0;
nX = numel( x );
n = numel( allMeas );

% Now do the Monte Carlo stuff
for i = 1 : N

% Randomize the measurements
randData = allMeas( randperm( n ) );
sampleX = randData( 1 : nX );
sampleY = randData( nX + 1 : end );

% Calculate the difference of the randomized samples
randDiff = abs( median( sampleX ) - median( sampleY ) );

% Is it larger than the real difference?
if randDiff >= realDiff

count = count + 1;

8The code assumes x and y to be row vectors.
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end

end

% Calculate the p-value (add one pseudo-count)
p = ( count + 1 ) / ( N + 1 );

The pseudocount added to both count and N is to make sure we don’t get an unreason-
able p-value of 0 (the function cannot estimate a p-value smaller than 1/N). Since N is
usually much larger than 1, the influence of this single pseudocount can be neglected.
Let’s try our testDiffMedian function on some random samples:

>> x = 1 + rand( 1, 40 );
>> median( x )

ans =
1.5266

>> y = 1.2 + rand( 1, 60 );
>> median( y )

ans =
1.7475

p = testDiffMedian( x, y, 1000 )

p =
0.0370

Our function rejected the null hypothesis that the two samples have the same mean at
the 0.05 significance level.

Exercise: how would you modify testDiffMedian to perform a single-sided insteadExercise
of a two-sided (two-tailed) test?

Exercise: Write a modified version of testDiffMedian (call it testDiffVar) that testsExercise
fro the difference in the variances using a similar Monte Carlo approach.
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