Microscopy Network Basel Image processing course Linear shift-invariant systems

Aaron Ponti

Signals

Signals

 A function containing information about some phenomenon of interest.

• A quantity exhibiting variation in time and/or space.

Analog and digital signals (1D)

Analog and digital signals (1D)

A/D conversion

- Analog-to-digital conversion is a 2-step process:
 - Sampling: converts a continuous signal into a discrete one
 - Quantization: discretizes the amplitude of the signal.

Sampling

The continuous signal (blue) is measured at discrete time intervals (red dots).

Quantization

The continuous signal (blue) at discrete time intervals is approximated to a fixed number of discrete values (magenta crosses).

Example: CD sound quality 44.1 kHz, 16bit, stereo

Compact disc

2 channels, each with:

Sampling rate

44.1 kHz $\rightarrow \Delta T = 1/\text{rate} \approx 2.3 \cdot 10^{-5} \text{ s}$

Quantization levels

16 bit \rightarrow 2¹⁶ = 65536 levels

Analog and digital signals (2D)

Sampling and quantization (2D)

In this example, signal intensity is approximated by 256 discrete values (8 bits).

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots f(0,N-1) \\ f(1,0) & f(1,1) & \dots f(1,N-1) \\ \dots & \dots & \dots \\ f(N-1,0) & f(N-1,1) & \dots f(M-1,N-1) \end{bmatrix}$$

2D and 3D images

• In 2D images, each grid element, or *pixel* (picture element), is defined as a location and a value representing the characteristic of the signal at that location.

I(x,y,z)

- In 3D images, the pixel is called voxel (volume element).
- Common in the field of biomedical imaging.

Sampling spatial resolution

Quantization -> grayscale resolution

Resolution summary

Increasing Spatial Resolution— Digital Camera System

Systems

Discrete signal (notation)

Systems

Examples:

$$y(n_1, n_2) = 255 - x(n_1, n_2)$$

 $y(n_1, n_2) = median(N(x(n_1, n_2)))$

A neighborhood of a given position (pixel) $x(n_1, n_2)$

Systems

T[] can be any sort of transformation (system) of the input signal $x(n_1, n_2)$.

We will now consider a family of systems with following properties:

- Linearity
- Spatial (shift) invariance

Linear systems

If

$$T[a_1x_1(n_1, n_2) + a_2x_2(n_1, n_2)] = a_1T[x_1(n_1, n_2)] + a_2T[x_2(n_1, n_2)]$$

then **T**[] is linear.

The transformed version of a weighted sum of signals is the same as the weighted sum of the signals transformed individually.

(Alternatively, a linear system can be decomposed into constituents that are processed independently, and the result combined in the end.)

Shift-invariant systems

Given:

$$T[x(n_1, n_2)] = y(n_1, n_2)$$

If

$$T[x(n_1 - k_1, n_2 - k_2)] = y(n_1 - k_1, n_2 - k_2)$$

then **T**[] is shift-invariant.

If the input is shifted by a given amount, the output will be shifted by the same amount.

(Or, the location of the origin of the coordinate system is irrelevant.)

Discrete Unit Impulse

$$\delta(n_1, n_2) = \begin{cases} 1, & for \ n_1 = n_2 = 0 \\ 0, & otherwise \end{cases}$$

The system response to the unit impulse is all we need to fully describe the LSI system.

Convolution

LSI systems can be described and efficiently implemented by the mathematical operation of **convolution**.

$$y(n_1, n_2) = x(n_1, n_2) \circledast h(n_1, n_2)$$

$$y(n_1, n_2) = x(n_1, n_2) \circledast h(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

Convolution (1D example)

$$y(n) = x(n) \circledast h(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$

$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$h = \begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1$$

Full convolution: $y(n) = [2 \ 8 \ 20 \ 32 \ 44 \ 44 \ 30]$

Impulse signal

Impulse response function

$$y(n_1, n_2) = x(n_1, n_2) \circledast h(n_1, n_2)$$

The output signal is formed as a linear combination (i.e. weighted sum) of spatially-shifted¹ impulse response functions.

¹ Or time-shifted in 1D.

Spatial filtering through convolution

Examples of convolution filters

 $X(n_1, n_2)$

3x3 average filter (poor) Low-pass filter

3x3 Gaussian filter (better) Low-pass filter

$$h = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix} \qquad h = \begin{bmatrix} 0.0751 & 0.1238 & 0.0751 \\ 0.1238 & 0.2042 & 0.1238 \\ 0.0751 & 0.1238 & 0.0751 \end{bmatrix}$$

High-pass filter

$$h = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

"kernels" h

$$y(n_1, n_2) = x(n_1, n_2) \circledast h(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

Spatial filtering through convolution

Examples of convolution filters

 $X(n_1, n_2)$

11x11 average filter

1/121 1/121 1/121 ... 1/121 $h = \begin{vmatrix} 1/121 & 1/121 & 1/121 & \dots & 1/121 \end{vmatrix}$ 1/121 1/121 1/121 ... 1/121

Larger "support" of the filter

Prewitt Vertical edge

$$h = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Prewitt Horizontal edge

$$h = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad h = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

"kernels" h

$$y(n_1, n_2) = x(n_1, n_2) \circledast h(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

Spatial filtering

The convolution of a signal in the spatial domain has very specific effects on the frequency content of the signal.

Exponential sequences

$$x(n_1, n_2) = e^{jw_1' n_1} e^{jw_2' n_2}$$

$$e^{jw_1^{\scriptscriptstyle |}n_1}e^{jw_2^{\scriptscriptstyle |}n_2} \stackrel{\text{Euler's formula}}{=} \cos\left(w_1^{\scriptscriptstyle |}n_1 + w_2^{\scriptscriptstyle |}n_2\right) + j\sin\left(w_1^{\scriptscriptstyle |}n_1 + w_2^{\scriptscriptstyle |}n_2\right)$$

What happens if we pass exponential sequences through an LSI system?

$$\begin{array}{ccc}
 & e^{jw'_1n_1}e^{jw'_2n_2} & & LSI \\
 & X(n_1, n_2) & & \hline
 & h(n_1, n_2) & & y(n_1, n_2) ?
\end{array}$$

Frequency response of a system

$$X(n_1, n_2) \xrightarrow{LSI} y(n_1, n_2)$$
?

We calculate the convolution of $x(n_1, n_2)$ with the impulse response $h(n_1, n_2)$:

$$y\left(n_{1},n_{2}\right)=x\left(n_{1},n_{2}\right)\otimes h\left(n_{1},n_{2}\right)$$

$$y\left(n_{1},n_{2}\right)=\sum_{k_{1}=-\infty}^{\infty}\sum_{k_{2}=-\infty}^{\infty}e^{jw_{1}^{'}\left(n_{1}-k_{1}\right)}e^{jw_{2}^{'}\left(n_{2}-k_{2}\right)}h\left(k_{1},k_{2}\right)$$

$$y\left(n_{1},n_{2}\right)=e^{jw_{1}^{'}n_{1}}e^{jw_{2}^{'}n_{2}}\sum_{k_{1}=-\infty}^{\infty}\sum_{k_{2}=-\infty}^{\infty}h\left(k_{1},k_{2}\right)e^{-jw_{1}^{'}k_{1}}e^{-jw_{2}^{'}k_{2}}$$

$$x\left(n_{1},n_{2}\right)$$
 The signal goes through untouched!
$$H\left(\omega_{1}^{'},\omega_{2}^{'}\right)$$

Frequency response of a system

$$y(n_{1}, n_{2}) = e^{jw_{1}^{"}n_{1}}e^{jw_{2}^{"}n_{2}} \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} h(k_{1}, k_{2})e^{-jw_{1}^{"}k_{1}}e^{-jw_{2}^{"}k_{2}}$$

$$x(n_{1}, n_{2})$$

$$H(\omega_{1}^{"}, \omega_{2}^{"})$$

- $H\left(\omega_{1}^{\shortmid},\omega_{2}^{\shortmid}\right)$:
 - is the frequency response of the system
 - tells us how the LSI system reacted to the input frequencies
 - is the **Fourier transform** of the impulse response h(n₁,n₂)
 - has a magnitude and a phase

Exponential sequences

(Joseph Fourier, 1768 – 1830)

Exponential sequences are **building blocks** of <u>any signal</u> and so called **eigen-functions** of LSI systems.

LSI systems cannot produce frequencies that are not in the input.

Continuous Fourier Transform

- We consider the **continuous** Fourier transform of a **discrete signal**.
- The Fourier transform maps a signal to its frequency representation.

• The Fourier transform is <u>periodic</u> with period 2π in the ω_1 and ω_2 directions (since the exponential sequences have the same periodicity).

Inverse Fourier transform

$$x\left(n_{1},n_{2}\right)=\frac{1}{4\pi^{2}}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}X\left(\omega_{1},\omega_{2}\right)e^{j\omega_{1}n_{1}}e^{j\omega_{2}n_{2}}d\omega_{1}d\omega_{2}$$
 One period — Important implications when sampling the signal!

Given an LSI system and its impulse response $h(n_1, n_2)$, we want to calculate its (continuous) frequency response $H(\omega_1, \omega_2)$, i.e. the Fourier Transform of $h(n_1, n_2)$.

$$\begin{split} H\left(\omega_{1},\omega_{2}\right) &= \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} h\left(n_{1},n_{2}\right) e^{-j\omega_{1}n_{1}} e^{-j\omega_{2}n_{2}} \\ h\left(0,0\right) + h\left(-1,0\right) e^{j\omega_{1}} + h\left(1,0\right) e^{-j\omega_{1}} + h\left(0,-1\right) e^{j\omega_{2}} + h\left(0,1\right) e^{-j\omega_{2}} = \\ \frac{1}{3} + \frac{1}{6} e^{j\omega_{1}} + \frac{1}{6} e^{-j\omega_{1}} + \frac{1}{6} e^{j\omega_{2}} + \frac{1}{6} e^{-j\omega_{2}} = \\ \frac{1}{3} + \frac{1}{6} \cdot 2cos\omega_{1} + \frac{1}{6} \cdot 2cos\omega_{2} = \frac{1}{3} \left(1 + cos\omega_{1} + cos\omega_{2}\right) \\ \uparrow \qquad \uparrow \qquad \uparrow \end{split}$$

Continuous and periodic.

H(0, 0) = 1 $H(-\pi, \pi/2) = 0$ $H(\pi, \pi/2) = 0$

Magnitude of the frequency response of $h(n_1, n_2)$ over one period $(-\pi : \pi)$

$$h(n_1, n_2) = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \longrightarrow H(\omega_1, \omega_2) = 9 - 2 \cdot \cos(\omega_1 - 2 \cdot \cos(\omega_2 - 2))$$

$$2 \cdot \cos(\omega_1 + \omega_2) - 2 \cdot \cos(\omega_1 - \omega_2)$$

High-pass filter

Convolution theorem

The convolution theorem describes the input – output relationships of an LSI system in the **frequency** domain.

Multiplication in the frequency domain

Reverse is also true.

Sampling

Under which conditions can we reconstruct a continuous, band-limited signal from its discrete representation with no loss of information?

$$X_a(\Omega_1, \Omega_2)$$

An alternative view: sampling can be modelled in direct space with a **multiplication** of the signal with a train of delta functions. The convolution theorem tells us that this corresponds to a **convolution** of the Fourier Transform of the signal with the Fourier Transform of the impulse train.

The spectrum of the analog signal X_a is periodically extended with periods $2\pi/T_i$. T_1 and T_2 define how far apart the replica of the spectrum will be.

Critical sampling

This (base) band contains the spectrum of the <u>analog</u> signal with no loss of information.

Oversampling

Undersampling

Aliased spectrum of the analog signal

Aliasing: example

Properly sampled

Undersampled and aliased

Nyquist sampling theorem

To reconstruct the analog image, extract (multiply) the digital spectrum with a low-pass filter:

$$F(\Omega_1, \Omega_2) = \begin{cases} T_1 T_2, & |\Omega_1| < \pi/T_1, |\Omega_2| < \pi/T_2 \\ 0 & otherwise \end{cases}$$

A 2D sync function in spatial domain. Constant (with gain T_1T_2) on the support area.

 $F(\Omega_1,\Omega_2)$

Discrete Fourier Transform (DFT)

- The continuous Fourier Transform of a discrete signal is not computable
 - continuous (i.e. infinitely many) frequencies ω_1 and ω_2 .

Sampling in the frequency domain results in periodic extension of the sampled

- One period in the frequency domain corresponds to one period of the spatial domain: this mapping is the **Discrete Fourier Transform (DFT)**.
- A sampled version of one period of the continuous Fourier transform is all is needed to reconstruct the analog signal.

Discrete Fourier Transform (DFT)

$$X\left(\omega_{1},\omega_{2}\right)=\sum_{n_{1}=0}^{N_{1}-1}\sum_{n_{2}=0}^{N_{2}-1}x\left(n_{1},n_{2}\right)e^{-j\overset{\checkmark}{\omega_{1}}n_{1}}e^{-j\overset{\checkmark}{\omega_{2}}n_{2}}$$
 Sampling in frequency space. We keep only one period.

$$X\left(k_{1},k_{2}\right) = X\left(\omega_{1},\omega_{2}\right)|_{\omega_{1} = \frac{2\pi}{N_{1}}k_{1},\omega_{2} = \frac{2\pi}{N_{2}}k_{2}} \\ \begin{cases} k_{1} = 0,\ldots,N_{1} - 1 \\ k_{2} = 0,\ldots,N_{2} - 1 \end{cases}$$
 N₁ samples N₂ samples

DFT pair

$$X(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2} \begin{cases} k_1 = 0, \dots, N_1 - 1 \\ k_2 = 0, \dots, N_2 - 1 \end{cases}$$

$$n(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X(k_1, k_2) e^{j\frac{2\pi}{N_1} n_1 k_1} e^{j\frac{2\pi}{N_2} n_2 k_2} \begin{cases} n_1 = 0, \dots, N_1 - 1 \\ n_2 = 0, \dots, N_2 - 1 \end{cases}$$

Most properties of the continuous FT apply to the DFT with one exception: **linear shifts** become **circular shifts** ("wrap around").

Fast Fourier Transforms (FFTs)

DFT:
$$X(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) e^{-j\frac{2\pi}{N_1}n_1k_1} e^{-j\frac{2\pi}{N_2}n_2k_2}$$

For each (k₁, k₂): N₁ * N₂ multiplications;
$$\begin{cases} k_1 = 0, \dots, N_1 - 1 \\ k_2 = 0, \dots, N_2 - 1 \end{cases}$$

For $N_1 = N_2 = N$, a full DFT requires \mathbb{N}^4 multiplications.

Fast Fourier Transforms (FFTs) are a family of algorithms that impressively speed up calculation of the DFT.

Best runtime is in the order:

aN²log₂N

For a 1024 x 1024 image, the FFT is approximately 10⁵ times faster that the DFT.

with a < 1.

DFT centered

DFT examples

Low-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates **ringing artifacts** that appear as spurious signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

High-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates **ringing artifacts** that appear as spurious signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

Band-pass filtering

In practice, one does not create sharp cut-offs in frequency domain, since this creates **ringing artifacts** that appear as spurious signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.

Removing unwanted frequencies

Circular convolution

linear convolution

$$y\left(n_{1},n_{2}\right)=x\left(n_{1},n_{2}\right)\circledast h\left(n_{1},n_{2}\right)$$

$$Y\left(k_{1},k_{2}
ight)=X\left(k_{1},k_{2}
ight)\cdot H\left(k_{1},k_{2}
ight)$$
 circular convolution $y\left(n_{1},n_{2}
ight)$

The circular convolution is infinite-length and periodic whereas the linear convolution is finite length, therefore a trick is needed to calculate linear convolution in frequency domain.

Circular convolution

Inappropriate support → aliasing

Appropriate support

Linear convolution in frequency domain (how to)

- Pad $x(n_1, n_2)$ and $h(n_1, n_2)$ with zeros to size $(N_1+M_1-1 \times N_2+M_2-1)$
- Calculate the FFT (DFT) of both
- Multiply the transforms together
- Calculate the inverse FFT of the result → same result as linear convolution
- Carve out the result from the center of the result

Linear convolution in frequency domain (how to)

Linear convolution in frequency domain (how to)

Convolution in spatial domain

```
\Rightarrow x = [1 2 3 4 5 4 3 2 1];
\Rightarrow h = [1 2 3 2 1];
                                    % M = 5
\Rightarrow y = conv(x, h)
y =
                           18
                                                 37
                                                        34
                                                                27
                                                                               10
>> y = conv(x, h, 'same')
y =
                                                                      % N (the borders have size = (M - 1) / 2)
     <u> 10</u>
            18
                           34
                                  37
                                                 27
                                                        18
```

Convolution in Frequency domain with inappropriate support → aliasing

```
>> ifft(fft([ 1 2 3 4 5 4 3 2 1]) .* fft([1 2 3 2 1 0 0 0 0])) % They need to have at least the same size y = 19 \quad 14 \quad 14 \quad 19 \quad \underline{27} \quad \underline{34} \quad \underline{37} \quad \underline{34} \quad \underline{27}
```

Convolution in Frequency domain with appropriate support