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Signals



Signals

* A function containing information about some phenomenon of
interest.

f(t)

: . Time (s)
A quantity exhibiting variation in time and/or space.



Analog and digital signals (1D)

Analog-to-digital converter

|

Acoustic signal Electric signal ...0110101011...
(continuous) (continuous) (discrete)

1D



Analog and digital signals (1D)

Digital-to-analog converter

Transducer

...0110101011... Electric signal Acoustic signal
(discrete) (continuous) (continuous)

1D



A/D conversion

» Analog-to-digital conversion is a 2-step process:

« Sampling: converts a continuous signal into a discrete one

« Quantization: discretizes the amplitude of the signal.



Sampling

Time sampling with interval A T

Time (s)

At

The continuous signal (blue) is measured at discrete time intervals (red dots).



Quantization

Amplitude quantization
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The continuous signal (blue) at discrete time intervals is approximated to a

fixed number of discrete values (magenta crosses).



Example: CD sound quality
44.1 kHz, 16bit, stereo

2 channels, each with:

Sampling rate
44.1 kHz > AT = 1/rate = 2.3:10> s

Quantization levels
16 bit > 216 = 65536 levels

Compact disc



Analog and digital signals (2D)

Electromagnetic waves

(continuous) L e
Analog camera (with film)

(Analog) CRT monitor

A/D

D/A

\ J

Digital camera

2D

RCAR.
- —
J

| EM waves
(continuous)

\

Digital monitor



Sampling and quantization (2D)

Digital image
Analog signal Sampling Quantization
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In this example, signal intensity is approximated by 256 discrete values (8 bits).

1(0,0) (0,
f(1,0) fQ,

FIN=1,0) f(N=1,1) . f(M—1,N—1)

1) f(0O,N —1)
1

flx,y) = ) ~f(LN—1)



2D and 3D images

Y)

|(x

, Or pixe

(picture element), is defined as a location and a
signa

value representing the characteristic of the

* In 2D images, each grid element
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(volume element).

Common in the field of biomedical




Sampling =» spatial resolution

256 x 256 128 x 128

32 x 32 16 x 16



Quantization =» grayscale resolution
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8 levels (3 bit) 2 levels (1 bit)



Resolution summary

-+ |ncreasing Spatial Resolution—
Digital Camera System
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Systems



Discrete signal (notation)

X(n]_l nz)

1T 1T 1

0.0




Systems

Input Output
x(nl, nz) y(nl; nz) = T[X(n1; nz)]
Transformation
Examples:

y(ny, ny) =255 - x(ny, n,)

y(ny, ny) = median(N(x(ny, n,)))

T

A neighborhood of a given position (pixel) x(n,, n,)



Systems

Input Output

l l

x(ny, n,) T[] y(ny, ny) = Tx(ny, n,)]

T[] can be any sort of transformation (system) of the input signal x(n,, n,).

We will now consider a family of systems with following properties:
* Linearity

e Spatial (shift) invariance



Linear systems

If

then T[] is linear.

The transformed version of a weighted sum of signals is the same as the
weighted sum of the signals transformed individually.

(Alternatively, a linear system can be decomposed into constituents that are
processed independently, and the result combined in the end.)



Shift-invariant systems

Given:

T[x(n,, n,)] = y(n,, n,)

then T[] is shift-invariant.

If the input is shifted by a given amount, the output will be shifted by the same amount.

(Or, the location of the origin of the coordinate system is irrelevant.)



Discrete Unit Impulse

)
1 = =0
5 (1. 12) = < . forny =ns

\ 0, otherwise

6 (nl, TLQ)
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Linear Shift-Invariant systems

Unit impulse Impulse response
l of the LS| system
o(ny, ny) h(ny, n,)




Linear Shift-Invariant systems

).
% o)
Unit impulse Impulse response
o

l of the LSlI system
6(n11 nz) LS| h(nl, nz)
x(nl, nz) Y(nl, nz)

The system response to the unit impulse is all we need to fully describe the LSI system.




Convolution

X(nl, nz) y(np nz)

LS| systems can be described and efficiently implemented by the
mathematical operation of convolution.

[ y(ni,no) = x(ny,ne) ® h(ng, no) }

y(nlanE):m(nlan2)®h(nl:n2): Z Z m(klakZ)h(nl_kl:HZ_kZ)

klz—OOkQZ—OO



Convolution (1D example)

o )
y(n)=z(n)®h(n)= Z z(k)h(n—k)

k=—o00
x=1[12345 (1234 5] -
[ ] PRI 5* 6 = [30]
h=1[2456] [12345]
6 4 2] 6 %4 +5*4=[4430]
[12345] 3%6+4%4+5%2=1[44 44 30]

<«——— [6 4 2]

2*6+3*44+4 %2

[32 44 44 30]

[12 34 5]
<« [6 4 2]

[
*
(o)
+
N
*
I
+
w
*
N
1l

[20 32 44 44 30]

[12 34 5]
«— [6 4 2]

[
*
I
+
N
*
N
1l

[8 20 32 44 44 30]

[12345]
«— [6 4 2]

=

*

N
Il

[2 8 20 32 44 44 30]

Full convolution: y(n)
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Linear Shift-Invariant systems

o(ny, n,) h(n,, n,)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

Impulse signal Impulse response function



Linear Shift-Invariant systems

LSI

X(ny, n,)
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

y(nll nz)
0O|l0]|O
1]1]0(0O0
1]11(0
1]0(0O0
0Oo|l0]O
0|01
0Oo|l0]O
0O|l0]O




Linear Shift-Invariant systems

X(n]_l nz) y(nli nz)
ojojofofojojo]|o0 ojojofofojoj]o
ojojofofojojo0]|O ojojofofojoj]o
ocojojofofojo]0O0]|O ojojo|(1f({1]0]0
ocojojof1(1j0]0]O0 LSI ojoj1f(2]2|1/|0
ocojojofofojojoj|o ojojo(1f{1]0]0
ojojofofojojo]|o0 ojojofofojoj]o
ocojojofofojojoj|o ojojofofojoj]o
ojojofofojojoj|o ojojofofojoj]o

The output signal is formed as a linear combination (i.e. weighted sum) of
spatially-shifted! impulse response functions.

1 Or time-shifted in 1D.



Spatial filtering through convolution

Examples of convolution filters

3x3 average filter 3x3 Gaussian filter . .
(poor) Low-pass filter (better) Low-pass filter High-pass filter

19 1/9 1/9 0.0751 0.1238 0.0751 -1 -1 -1
h=|19 1/9 19| h=|01238 02042 0.1238| h=|-1 8 -1

19 1/9 1/9 0.0751 0.1238 0.0751 ~1 -1 -1

“kernels” h

y(n1,m2) = (n1,n2) ® h(ny,ny) = Z Z 2 (ki,k2) b (n1 — ki, no — ko)



Spatial filtering through convolution

Examples of convolution filters

Prewitt Prewitt
11x11 average filter Vertical edge Horizontal edge

1/121 1/121 1/121 .. 1/121 10 1 1 -1 -1
1/121 1/121 1/121 .. 1/121
X(nl' n2) h=|1/121 1/121 1/121 .. 1/121 h={1 0 1] h—{ }
-1 01

1/121 1/121 1/121 .. 1/121

Larger “support” of the filter

“kernels” h

y(ni,ng) =x(ni,n2) ®h(n,ng) = Z Z x (ki,k2)h(ny — ki,ne — ko)



Spatial filtering

LT
Sl

Low-pass filter Band-pass filter High-pass filter
Gaussian kernel Difference of Gaussians kernel Laplacian kernel

The convolution of a signal in the spatial domain has very specific effects on the
frequency content of the signal.



Exponential sequences

x (ny,ng) = el W22

’
Euler’s formula Periodic with period 27.

l

e/ 1M 22 = cos (w)ny + wyng) + jsin (wing + wyng)
1
Polar representation Cartesian representation

What happens if we pass exponential sequences through an LSI system?

ejwllnl 6jwl2n2 LSI

X(ny, n,) h(n, ny) y(ny, ny) ?
17




Frequency response of a system

LSI

X(ny, ny) Ay y(ny, ny) ?
1, 772

We calculate the convolution of x(n,, n,) with the impulse response h(n,, n,):

y(ni,n2) =z (n1,n2) @ h(ny,na)

00 e
’y(ﬂ,lgﬂﬂ) — Z Z ejwi(nl—kl)ejwé(ng_kg)h(l{fl,]{fg)
ki=—00 ko=—0o
00 o0 \s s
y(ni,ng) =el™imedvanz N N p(ky kg ) e vkt e Ik
\ Y J k1 =—00 ka=—00
x (ny,n9) | Y

[ [
The signal goes through untouched! H (w 13 w2 )



Frequency response of a system

o0

o0
y(ny,ng) = @vimieiuinz N7 (k) emdwhkipmivbhs
\ Y }k]_:—ookgz—oo

\

x (ny,n2) \
H (w'l,w'z)
H (w'l,w'z) :
e is the frequency response of the system
* tells us how the LSI system reacted to the input frequencies

* is the Fourier transform of the impulse response h(n,,n,)
* has a magnitude and a phase



Exponential sequences

(Joseph Fourier, 1768 — 1830)

/
Exponential sequences are building blocks of any signal and so called

eigen-functions of LS| systems.

T

Frequencies are left untouched
|

g R
eJW1N1 JW2T12 - A . pJWin1 pjwanz ej(,'b
/ Amplitude change Linear phase shift

... and any signal

LS| systems cannot produce frequencies that are not in the input.



Continuous Fourier Transform

We consider the continuous Fourier transform of a discrete signal.
The Fourier transform maps a signal to its frequency representation.

: . Fourier transform _ ,
Continuous variables Discrete signal

\ 00 o0 /
X (wy,wa) = Z Z x (ny,ng)e /WM e Iw2N2

f 1 =—0QMNg=—00

The Fourier transform is periodic with period 2r in the ®,; and ®, directions
(since the exponential sequences have the same periodicity).

Inverse Fourier transform

7

1 [T | |
x(ny,ng) = 47r2/ X (wy,wg) ¥ e?*22 dw dws

— T

L J
T

One pe riod <—— Important implications when sampling the signal!



Frequency response: example

Given an LS| system and its impulse response h(n,, n,), we want to calculate its
(continuous) frequency response H(®,, ®,), i.e. the Fourier Transform of h(n,,

n,).

n,
h(ny, n,)
h(0, 1)
-
1/3
h(-1, 0) h(0, 0) h(1, 0)
- - - i 13 | 1/6 | 1/3
1
h(0, -1) 13
-
h(ny, n,)




Frequency response: example

oo o0

h(0,0) +h(—1,0) e +h(1,0)e % 4 h(0,—1)e’“? + h(0,1)e 72 =

1 1 . 1 _. 1 . 1 .
T Zedwr g Zomdwr | Cgdwe T o—jwe
3 T 0 T 0 T 6 T 6
1 1 1 1
3 + g 2coswy + 5 2008wy = 3 (1 + cosw; + cosws)

I

Continuous and periodic.



Frequency response: example

H(0,0) =1
H(-w, 7/2) =0
H(r, ©/2) =0

Low-pass filter

A KOO0GAORIIRN
1RSI
/ (YOI
[/ 0'0“““‘\ “\\\Q
e

Wl =

(1 4 coswy + cosws)

“”‘Q Py
OSSN

Y \
ARSI

AN

RO

{ 6 \
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e

Magnitude of the frequency response
of h(n,, n,) over one period (—n : 1)




Frequency response: example 2

h(ny.no)

Impulse response

10 log, (IH(w,, w,)])

—

\\\\\\‘ ’0’0’0 '
\\\\\\\\\‘ \:“\ "‘.0,0 9% "I

(R

7,
[1]]]]
,"ll /1]
1y

‘\\\\ "'l‘"é/ll
\\\\\\0.'0';751//

’Q‘o"lll /

H(wi,wo)=9 -2 cosw1 — 2 coswa—

High-pass filter



Convolution theorem

The convolution theorem describes the input — output relationships of an LSI
system in the frequency domain.

y(ny,ne) =x(ny,ne) ® h(ng,n)

FT IFT FT IFT FT IFT

Y(WI,WQ) = X (wlau'}Z) ) H(U.Jl,br..?z)

_ Multiplication in the frequency domain
Reverse is also true.



Sampling

Under which conditions can we reconstruct a
continuous, band-limited signal from its discrete
representation with no loss of information?

X,(Q,, Q,)

Q
2 Region of support of the

frequency response

/

Analog, continuous signal
(band-limited)

An alternative view: sampling can be modelled in direct space with a multiplication of the signal with a train of delta functions. The
convolution theorem tells us that this corresponds to a convolution of the Fourier Transform of the signal with the Fourier Transform
of the impulse train.



R o, Spectrum of the analog signal

Sampling by e s

X (T, QT,) =

2T 27
T Z Z Xa (91 - ﬁklaﬂQ - Ekz)

k]_:—OO k2=—00 /]\ /]\
X (Q T. O.T ) Periodic expansion
We only store the values at the S\*F171, 29272
intersection points of the grid.
o, - T 9
T
. Q N
Sampling on 2 T3

a regular grid

T, (sampling period)

(sampling frequency)

27
Ty

The spectrum of the analog signal X, is periodically extended with periods 27t/T..

T, and T, define how far apart the replica of the spectrum will be.



Critical sampling

XS(QlTll QZTZ)

Sampling on ),

a regular grid

This (base) band contains the spectrum of the analog signal with no loss of information.



Oversampling

XS(QlTll QZTZ)

Sampling on
a regular grid




Undersampling
Xs(Q,T,, Q,T,)

: Q
Sampling on 2 o
a regular grid Allasmg

FT

Aliased spectrum of the analog signal



Aliasing: example

Properly sampled Undersampled and aliased



Nyquist sampling theorem Sa;"“’””g”‘*q“‘*“y
Xo(2y, Q) o o
o ﬁ_QleﬂNl =>Tl > 20N,
A 2 2
beginning of m (0
firsgt repliia E — QNQEQNQ = E 2 QQNQ
I Nyquist critical sampling

I What should the
optimal sampling
period T, be?

QNQ —_—

QNl <— max frequency in n, direction

To reconstruct the analog image, extract (multiply) F(Q1, Q)
the digital spectrum with a low-pass filter:

1T (2 T, | T:
F(Qhﬂz):{ T, | |< /T, [ |< 7Ty

/ 0 otherwise ’\

A 2D sync function in spatial domain. Constant (with gain T,T,) on the support area.




Discrete Fourier Transform (DFT)

* The continuous Fourier Transform of a discrete signal is not computable
* continuous (i.e. infinitely many) frequencies ®; and o,.

* Sampling in the frequency domain results in periodic extension of the sampled
spatial signal.

| | L Ll bl 3
(e NSENE e
i o T S
—¢ & S S iﬂ—t— .
4 IR Fourier series g g4 & :
: ‘ T representations
—r = — u
—e—4 —l- 4 - — —4—4— -
—— 1 74L~—- —
—— — ¢ —|~<»—<>— ——|~4r— 4 - L
IR W U G + = + +_T . - .

* One period in the frequency domain corresponds to one period of the spatial
domain: this mapping is the Discrete Fourier Transform (DFT).

 Asampled version of one period of the continuous Fourier transform is all is
needed to reconstruct the analog signal.



Discrete Fourier Transform (DFT)

Continuous
Ni—1 Ns—1 \[ \[

X (wi,w2) = Z Z x (ny,no) pJwin1 ,—jwans

n1=0 ny=0 Sampling in frequency space. We keep only one period.

X (k1 ks) = X (@1,w2) oy 205, S

e

N, samples N, sampl

DFT pair

Ni—1 Ny—1 ) )
_'_ﬂ ey — 2% 0
X (ky, ko) = E E (ny,ng) e IR L T N 2R

?’l]_:{} %) =0

Ni—1Ns—1
k2 JNlnlkl JN na ko

n(ny, ny)
=0 ko=0

ki =0...., Ny —1
ko =0,...,Ny —1
ki =0,...,N; —1
k"QZU, .,Ng—l
nlz(J,...,Nl—l
TL2=U,...,N2—1

Most properties of the continuous FT apply to the DFT with one exception: linear shifts become circular

shifts (“wrap around”).



Fast Fourier Transforms (FFTs)

Ni—1Ny—1 .
2 : 2 : —Jxnikys — k

ny=— 0 ng—O

klzﬂ,...,Nl—l

For each (k4, k,): N, * N, multiplications;
v ' 2 {kz_o,...,Nz—l

For N, =N, =N, a full DFT requires N4 multiplications.

Fast Fourier Transforms (FFTs) are a family of algorithms that impressively
speed up calculation of the DFT.

Best runtime is in the order:

For a 1024 x 1024 image,
the FFT is approximately

2
aN“log,N 10° times faster that the
with a < 1. DFT.




DFT centered

DFT centered



DFT examples

g
N




Low-pass filtering

FFT

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



FFT

IFFT

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



Band-pass filtering

L I‘l{_‘

In practice, one does not create sharp cut-offs in frequency domain, since this creates ringing artifacts that appear as spurious
signals near sharp transitions in a signal, i.e. they appear as "rings" near edges.



Removing unwanted frequencies




Circular convolution

linear convolution

Y (ﬂ’la ﬂ'Z) =& (ﬂ’la RZ) ® h (ﬂ’la ﬂ'Z)

DFT DFT

Y(klakQ) = X (klakQ) | H(klakQ)

IDFT

Yy (nq,ns)

circular convolution

The circular convolution is infinite-length and periodic whereas the linear
convolution is finite length, therefore a trick is needed to calculate linear
convolution in frequency domain.




Circular convolution

Aliased result of
linear convolution

/

v

/|

/

Result of
linear convolution

Inappropriate support = aliasing Appropriate support



Linear convolution in frequency domain (how to)

N, M, L,_N,+M,-1
—>n, n, n,
M]_ . L1=N1+M1‘1
0
0
v x(ny, n,) h(n,, n,)
Ny Ny n M, - 1) / 2)

* Padx(n,, n,) and h(n,, n,) with zeros to size (N;+M;-1 x N,+M,-1)

e Calculate the FFT (DFT) of both

* Multiply the transforms together

e Calculate the inverse FFT of the result - same result as linear convolution
* Carve out the result from the center of the result



Linear convolution in frequency domain (how to)

n,

660000
96 ©00000
60 mu) 0OOOOO
00 000000

000000




Linear convolution in frequency domain (how to)

Convolution in spatial domain

>>x =[123454321]; %N=29
> h=1[12321]; %M =5
>> y = conv(x, h)
y:
1 4 10 18 27 34 37 34 27 18 10 4 1 %N+ M-1=13
>> y = conv(x, h, 'same')
y:

10 18 27 34 37 34 27 18 10 % N (the borders have size = (M - 1) / 2)

Convolution in Frequency domain with inappropriate support - aliasing

>> ifft(fft([ 1 234543 21]) .* fft([1 23 210 0 0 0])) % They need to have at least the same size

y:
19 14 14 19 27 34 37 34 27

Convolution in Frequency domain with appropriate support

ifft(fft(x, numel(x) + numel(h) - 1) .* fft(h, numel(x) + numel(h) - 1))
cconv(x, h)

3¢ 3¢
< <
i n

>> ifft(fft([ 1234543210000]) .*fft([L232100000000]))

y:
1.00 4.00 10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 4.00 1.00

>> ifft(fft([ 12345432106000]) .*Ffft([3210000000012])) @ODOOOO O
y:
10.00 18.00 27.00 34.00 37.00 34.00 27.00 18.00 10.00 4.00 1.00 1.00 4.00

Y

The “border” is all on one side.



