
Introduction to ImarisXT and
IceImarisConnector

Extending Imaris with custom MATLAB functions Version 1.1.0

Aaron Ponti

Contents

1 Introduction 4
1.1 Bundled MATLAB XTensions . 4
1.2 Fiji methods and plug-ins . 6
1.3 Bundled python XTensions . 8
1.4 Setup . 8

1.4.1 Application paths . 8
1.4.2 XTension folders . 10

2 Interfacing with Fiji 11

3 An example python XTension 13

4 Writing MATLAB XTensions 15
4.1 Getting the course code . 15
4.2 Documentation . 15
4.3 ImarisXT pitfalls . 17

4.3.1 MATLAB closes when the XTension finishes 17
4.3.2 Signed vs. unsigned integers . 17

4.3.2.1 Getting image data from Imaris to MATLAB 17
4.3.2.2 Getting image data from MATLAB to Imaris 18
4.3.2.3 Exercise (for later) . 18

4.3.3 Objects (“proxies”) are returned as references to their base class 19
4.3.4 Row-major vs. column-major order 20
4.3.5 Dimensions order . 21

4.4 Our first XTension: classify spots by distance 21
4.4.1 The XTension header . 22
4.4.2 The XTension code . 23
4.4.3 The XTension code explained . 26
4.4.4 Exercise . 27

4.5 Our second XTension: plotting spots on a maximum-intensity projection 28
4.5.1 The XTension header . 28
4.5.2 The XTension code . 29
4.5.3 The XTension code explained . 32

5 Writing Imaris XTensions with IceImarisConnector 34
5.1 IceImarisConnector . 34
5.2 Where to find . 34

2

Contents

5.3 How to install . 34
5.4 Documentation . 36
5.5 How to use IceImarisConnector from Imaris 38
5.6 How to use IceImarisConnector from MATLAB 38
5.7 Our first XTension revised: classify spots by distance using IceImarisConnector 39

5.7.1 The XTension code explained . 41
5.8 Our second XTension revised: plotting spots on a maximum-intensity projection

using IceImarisConnector . 42
5.8.1 The XTension code explained . 44
5.8.2 Exercise . 45

3

1 Introduction

Even the best software packages for data analysis cannot possibly offer all of the functionalities
required for solving the problem at hand. Indeed, problem-specific customizations are necessary
in all but the most trivial cases. Bitplane Imaris1 allows to extend its palette of built-in processing
functions through ImarisXT2, a two-way interface to classic programming languages (such as
Java, C++, C# and Visual Basic), MATLAB3 and other image processing tools like ImageJ4 and
Fiji5.

Historically, ImarisXT used Microsoft’s Component Object Model (COM)6 binary interface
to allow interprocess communication with external tools; after Imaris was ported to Mac OS X,
COM (which only runs on Windows) was replaced with the Internet Communication Engine
(Ice)7, an efficient, cross-platform, distributed computing framework. ImarisXT exposes Ice
through a Java wrapper API. While Ice has made it possible for Imaris users on Mac OS X to use
ImarisXT on their favorite platform, the COM-based interface was easier to use and performed
a lot of work behind the scenes that is now responsibility of the user. We will discuss several of
these issues during the course.

By far the most common use of ImarisXT is in combination with MATLAB, and indeed
ImarisXT is bundled with a long list of already implemented MATLAB scripts (so called XTen-
sions) that perform all sort of tasks. Recently, Imaris added easy integration of ImageJ / Fiji and
their plug-ins and, as of Imaris 7.6, support for python8.

While we will take a quick look on how to use existing Fiji plug-ins and how to add new ones,
the bulk of this course will teach how to write Imaris XTensions in MATLAB and will present a
free and open-source library that facilitates the usage of ImarisXT: IceImarisConnector9.

1.1 Bundled MATLAB XTensions

The MATLAB XTensions bundled with ImarisXT10 can be started from the Image Processing
menu (see figure 1.1). They appear in the menu with a small MATLAB icon next to the name.

1http://www.bitplane.com
2http://www.bitplane.com/go/products/imarisxt
3http://www.mathworks.com
4http://rsbweb.nih.gov/ij/
5http://fiji.sc
6http://en.wikipedia.org/wiki/Component_Object_Model
7http://www.zeroc.com
8http://www.python.org
9http://www.scs2.net/next/index.php?id=110, which incidentally is also the home of the python alter ego of

IceImarisConnector: pIceImarisConnector (a.k.a. IceImarisConnector for python)
10Please notice that in recent Imaris versions, the bundled XTensions are not active by default. A configuration step

is required, as explained in section 1.4.

4

1 Introduction

Figure 1.1: The bundled MATLAB XTensions in the “Image processing” menu.

5

1 Introduction

When launching an XTension, Imaris will start MATLAB in the background which in turn
will run it. Even though the function will run behind the scenes, interactivity is possible: for
example, the XTension might open dialogs to ask for input parameters. Finally, the XTension can
send any results of the computation back to Imaris, display them on plots and figures, save them
to disk, or open them in Excel.

The Imaris reference manual contains a short help for each of the bundled XTensions (see
figures 1.2 and 1.3). As we will see in section 4, Imaris also provides good documentation on
how to write our own XTensions (see figure 4.2). Another great reference is provided by the
source code of the bundled XTensions.

Figure 1.2: Link to the documentation about the bundled MATLAB XTensions.

1.2 Fiji methods and plug-ins

As a more recent alternative to interfacing to MATLAB, ImarisXT now also allows inter-process
communication with ImageJ or Fiji. Fiji is a well established image processing tool with a
good number of integrated functionalities and an impressive number of plug-ins provided by the
community, and ImarisXT makes it easy to integrate this palette of additional functionalities into
the Imaris working environment.

The number of Fiji plug-ins that come bundled with Imaris is not as impressive as the number
of MATLAB XTensions, but a few examples exist and can be accessed from the Fiji menu. In
addition to the examples in the Process and Plugins submenu, Image From Fiji and Image To
Fiji allow for a very easy transfer of datasets from Fiji to Imaris and viceversa (see figure 1.4).

The first time a Fiji plug-in is launched from Imaris, the ImarisBridge must be installed (see
figure 1.5): this enables the two-way communication between the two environments.

6

1 Introduction

Figure 1.3: The bundled MATLAB XTensions explained.

Figure 1.4: The “Fiji” menu.

7

1 Introduction

Figure 1.5: The communication between Imaris and Fiji requires the installation of a special
Imaris Bridge.

1.3 Bundled python XTensions

As of Imaris 7.6, ImarisXT also supports writing XTensions in the python programming lan-
guage11 in its 2.7.x version. In Imaris versions 7.6 and 7.7, only three simple example XTen-
sions are bundled as templates. Writing python XTensions will not be treated in this course; an
example XTension in python is shown in section 3.

1.4 Setup

1.4.1 Application paths

To ensure that Imaris can start MATLAB when the user launches an XTension, a setup step is
required. From the Imaris (Mac OS X) or Edit menu (Windows), choose Preferences and change
to the Custom Tools pane (see figure 1.6).

Make sure to set the path the MATLAB executable. On Windows12 it will be something like:

C:\Program Files\MATLAB\R201Xa_x64\bin\win64\MATLAB.exe

while on Mac OS X it will be something like:

/Applications/MATLAB_R201Xa.app/bin/matlab

If you do not own a license for MATLAB, the MATLAB COMPILER RUNTIME (referred to as
MATLAB Runtime Environment in the Custom Tools dialog) can be used instead. The MCR
is free and can be downloaded from the MathWorks website13. Please mind that while this will
allow the bundled XTensions to run, you will not be able to write and run your own custom
XTensions!
11http://www.python.org.
12No longer needed in recent Imaris versions.
13http://www.mathworks.com/products/compiler/mcr/index.html

8

1 Introduction

Figure 1.6: The Custom Tools preferences pane.

9

1 Introduction

As for MATLAB, also the ImageJ / Fiji Application path must be set (see Figure 1.6). Since
Fiji does not come with an installer, the path will depend on where you extracted the archive.
Analogously, to run python XTensions, python 2.7 must be installed and the path to the python
executable must be set.

1.4.2 XTension folders

The paths to all XTensions folders14 was hard-coded in Imaris up to version 7.5 to

C:\Program Files\Bitplane\Imaris 7.x.y\XT\{tool}

on Windows and

/Applications/Imaris 7.x.y.app/Contents/SharedSupport/XT/{tool}

on Mac OS X, with {tool} mapping to a set of subfolder names as follows:

rtmatlab for the compiled MATLAB XTensions to be used with the MATLAB COMPILER

RUNTIME;

matlab for the standard MATLAB XTensions to be used with MATLAB;

fiji for the Fiji/ImageJ XTensions.

In more recent versions of Imaris, those subfolders still exist, with the notable addition of:

python for the python XTensions,

however, Imaris ignores them until they are explicitly configured in the XTensions Folders field
of the Custom Tools preference pane (see figure 1.6 at the bottom). Additional, custom XTension
folders must be added there as well.

14For both bundled and custom XTensions.

10

2 Interfacing with Fiji

Adding a plug-in to the Imaris Fji menu is done via short text files that contain both the infor-
mation on where they are to be installed in the Fiji menu and the actual code. As an example,
navigate to:

/Applications/Imaris 7.x.y.app/Contents/SharedSupport/XT/fiji

on Mac OS X or

C:\Program Files\Bitplane\Imaris 7.x.y\XT\fiji

on Windows, and open one of the text files you find there. Here, we will take a look at the
EEE_Process_Find Edges.txt file1.

The first part of the file is a header that Imaris uses to add the entry to the Fiji menu:

// <CustomTools>

// <Menu name="Fiji">

// <Submenu name="Process">

// <Item name="Find Edges" icon="Fiji">

// <Command>ImageJ::EEE_Process_Find Edges</Command>

// </Item>

// </Submenu>

// </Menu>

// </CustomTools>

The header informs Imaris that a custom tool with name “Find Edges” will be added to the Fiji
menu, in the submenu Process and will run the (ImageJ macro) code in the file EEE_Process_Find
Edges.txt file. The actual code:

call("Imaris_Bridge.In", getArgument());

run("Find Edges");

call("Imaris_Bridge.Out", getArgument());

will run the In() method from the Imaris_Bridge.in Java jar package passing the reference to the
current active Imaris dataset to be copied to Fiji, will then run the “Find Edges” method in Fiji,
and copy back the result from the active Fiji window to Imaris. The code between to two calls
to the Imaris_Bridge is simple ImageJ macro language2.

As another example, we will write our own Fiji XTension named:

HHH_ImarisXT_Course_AboutIJ.txt,

1The purpose of the uppercase letters at the beginning of the names (i.e. EEE_) is just for sorting.
2http://rsbweb.nih.gov/ij/developer/macro/macros.html

11

2 Interfacing with Fiji

that simply opens the “About ImageJ” image in Fiji and copies it to Imaris.

// <CustomTools>

// <Menu name="Fiji">

// <Submenu name="ImarisXT Course">

// <Item name="About ImageJ" icon="Fiji">

// <Command>ImageJ::HHH_ImarisXT_Course_AboutIJ</Command>

// </Item>

// </Submenu>

// </Menu>

// </CustomTools>

run("About ImageJ...");

call("Imaris_Bridge.Out", getArgument());

close();

In our header, we add it to an “ImarisXT Course” submenu straight under the Fiji menu.

12

3 An example python XTension

Writing python XTensions is not treated in this course: we will just look at one of the bundled
examples. After reading chapter 4, you will find several parallels between python and MATLAB
XTensions.

#

#

PythonXT Simple Spots Example for Imaris

#

#

Copyright Bitplane AG

#

#

<CustomTools>

<Menu>

<Item name="Simple Spots Example" icon="Python" tooltip="Simple XTension... Dataset">

<Command>PythonXT::XTSimpleSpotsExample(%i)</Command>

</Item>

</Menu>

</CustomTools>

import time

import ImarisLib

def XTSimpleSpotsExample(aImarisId):

Create an ImarisLib object

vImarisLib = ImarisLib.ImarisLib()

Get an imaris object with id aImarisId

vImaris = vImarisLib.GetApplication(aImarisId)

Check if the object is valid

if vImaris is None:

print 'Could not connect to Imaris!'

Sleep 2 seconds to give the user a chance to see the printed message

time.sleep(2)

return

Get the currently loaded dataset

vImage = vImaris.GetDataSet()

This xtension requires a loaded dataset

if vImage is None:

print 'An image has to be loaded into Imaris first'

13

3 An example python XTension

time.sleep(2)

return

Get the extents of the image

vExtentMinX = vImage.GetExtendMinX();

vExtentMinY = vImage.GetExtendMinY();

vExtentMinZ = vImage.GetExtendMinZ();

vExtentMaxX = vImage.GetExtendMaxX();

vExtentMaxY = vImage.GetExtendMaxY();

vExtentMaxZ = vImage.GetExtendMaxZ();

vImageSizeX = vExtentMaxX - vExtentMinX;

vImageSizeY = vExtentMaxY - vExtentMinY;

vImageSizeZ = vExtentMaxZ - vExtentMinZ;

vMinRadius = min(vImageSizeX, vImageSizeY, vImageSizeZ) / 2;

Calculate the center of the image

vCenterX = (vExtentMinX + vExtentMaxX) / 2;

vCenterY = (vExtentMinY + vExtentMaxY) / 2;

vCenterZ = (vExtentMinZ + vExtentMaxZ) / 2;

Create a spots component

vSpotsComponent = vImaris.GetFactory().CreateSpots();

Add one spot in the center

The positions array is 2 dimensional

vSpotsComponent.Set([[vCenterX, vCenterY, vCenterZ]], [0], [vMinRadius]);

Give the component a nice name

vSpotsComponent.SetName('Image Center Spot');

Color the one spot red

vSpotsComponent.SetColorRGBA(255);

Add the spots component at the end of the surpass tree

vImaris.GetSurpassScene().AddChild(vSpotsComponent, -1);

Although writing Imaris XTensions in python is not treated in this course, it is worth pointing out
that there exists a companion to the IceImarisConnector that facilitates writing Imaris XTensions
with python: pIceImarisConnector1 (IceImarisConnector for python).

1http://www.scs2.net/next/index.php?id=110

14

4 Writing MATLAB XTensions

In this section, we will write two MATLAB XTensions using exclusively the standard API. In the
next section we will rewrite the same XTensions taking advantage of the additional functionalities
provided by IceImarisConnector.

4.1 Getting the course code

In preparation to it, go ahead and create a folder on your hard disk where you will store the four
MATLAB XTensions and add it to the XTension folders as discussed in section 1.4.2 and shown
on figure 1.6. You can download the already written XTensions1 and an Imaris file2 that we will
need for testing them from http://www.scs2.net/next/index.php?id=20.

4.2 Documentation

The documentation of ImarisXT consists of its API (see figure 4.1). All classes of the XT
interface are thoroughly documented. In the example of figure 4.2, all methods of the ISpots

class are displayed. An ISpots object represents the spots created in the Surpass Scene and
allows to manipulate them programmatically as we will see in later sections. Each method
signature in Figure 4.2 is a link to more detailed information and some example code.

Figure 4.1: The link to the ImarisXT API documentation in the Help menu.

1Direct link: http://www.scs2.net/next/files/courses/iic/XTensions.zip
2Direct link: http://www.scs2.net/next/files/courses/iic/ImarisXTCourse.ims.zip

15

4 Writing MATLAB XTensions

Figure 4.2: The ImarisXT API documentation.

16

4 Writing MATLAB XTensions

4.3 ImarisXT pitfalls

The document Matlab Migration Guide To Imaris73.pdf found in the XT/matlab folder con-
tains a detailed treatment of all differences from the old ImarisXT-based COM interface to the
new Ice-based one, and lists rather succinctly several limitations of the usage of Java for the
communication between Imaris and MATLAB. The document does not go into any significant
details, therefore we will discuss some examples here that require particular care.

4.3.1 MATLAB closes when the XTension finishes

The COM-based ImarisXT would start MATLAB and maintain a live connection until the user
would close either one of the software. This means that once MATLAB had started, all subse-
quent XTensions could be run immediately. The Ice-based ImarisXT instead closes MATLAB as
soon as the XTension has finished executing. Possibly the most important drawbacks of forcibly
closing MATLAB at the end of each run is that debugging XTensions becomes quite complicated
(albeit not impossible); moreover, in case of lengthy initialization scripts, MATLAB might take
a while to start, thus introducing a delay between repeating runs. Trying to trick MATLAB into
staying open by displaying a modal dialog or a figure3 will not work, since MATLAB will stay
open but will not be usable., since the open figure blocks.

4.3.2 Signed vs. unsigned integers

All integer types in Java are signed. An 8-bit integer in MATLAB can be signed (and cover the
range -128:127) or unsigned (and cover the range 0:255); similarly, a 16-bit integer in MATLAB
is either signed (-32768:32767) or unsigned (0:65535). Images are usually stored as 8- or 16-bit
unsigned integers (or in some rare cases a 32-bit float, but this is irrelevant for our discussion
here), and this is how both MATLAB and Imaris represents them internally. The tricky part
is the transfer of image data from Imaris to MATLAB and vice-versa, which happens through
Java4.

4.3.2.1 Getting image data from Imaris to MATLAB

While COM offered one function that would take care of transferring the data with the correct
datatype (IDataSet::GetDataVolume()), with Ice all the work is left to the user. We will discuss
the details of the code later, here we will just show the steps required to get the 3D stack for the
first channel and first time point:

% Get the dataset class

switch char(iDataset.GetType())

case 'eTypeUInt8', datatype = 'uint8';

case 'eTypeUInt16', datatype = 'uint16';

case 'eTypeFloat', datatype = 'single';

otherwise, error('Bad value for iDataSet.GetType()');

end

3As a general recommendation, if your XTension generates plots, better save them to disk from your code.
4This is actually a problem wherever integers are involved, like for instance when getting/setting RGBA colors.

17

4 Writing MATLAB XTensions

% Allocate memory

stack = zeros([iDataset.GetSizeX(), iDataset.GetSizeY(), ...

iDataset.GetSizeZ()], datatype);

% Get the stack

switch char(iDataset.GetType())

case 'eTypeUInt8',

arr = iDataset.GetDataVolumeAs1DArrayBytes(0, 0);

stack(:) = typecast(arr, 'uint8');

case 'eTypeUInt16',

arr = iDataset.GetDataVolumeAs1DArrayShorts(0, 0);

stack(:) = typecast(arr, 'uint16');

case 'eTypeFloat',

stack(:) = iDataset.GetDataVolumeAs1DArrayFloats(0, 0);

otherwise,

error('Bad value for type');

end

We first have to query the type of the dataset so that we can allocate a memory block with the
right type in MATLAB. We can then call the correct Ice method to get the pixel data, and then
typecast the signed integer into an unsigned integer. As we will see, IceImarisConnector does
everything transparently to the user with the type-agnostic method GetDataVolume(). Here we
used the GetDataVolumeAs1DArray<Type> methods because it makes the transfer much faster
and because the MATLAB typecast functions works on 1D arrays anyway.

4.3.2.2 Getting image data from MATLAB to Imaris

Copying pixel data back to Imaris does not require a type cast!

% Set the stack

switch char(iDataSet.GetType())

case 'eTypeUInt8',

iDataSet.SetDataVolumeAs1DArrayBytes(stack(:), 0, 0);

case 'eTypeUInt16',

iDataSet.SetDataVolumeAs1DArrayShorts(stack(:), 0, 0);

case 'eTypeFloat',

iDataSet.SetDataVolumeAs1DArrayFloats(stack(:), 0, 0);

otherwise,

error('Bad value for iDataSet.GetType()');

end

Here we can pass the stack as is, without typecast! Notice that here the usage of the GetDataVolumeAs1DArray<Type>
methods is not strictly necessary, but it is faster. IceImarisConnector provides a SetDataVolume()
method that takes care of all the details.

4.3.2.3 Exercise (for later)

Compare the performance of GetDataVolumeBytes() vs. GetDataVolumeAs1DArrayBytes().

18

4 Writing MATLAB XTensions

4.3.3 Objects (“proxies”) are returned as references to their base class

Whenever one asks ImarisXT to return an object, e.g. using the GetSurpassSelection() method5

that returns the object that is currently selected in the Surpass Scene, ImarisXT returns a refer-
ence to the Imaris::IDataItem base class (see the IDataItem class hierarchy in figure 4.3)
instead of the actual object class.

Figure 4.3: The IDataItem class hierarchy.

As an example, we consider the case where the selected object is an ISpots object, and in our
MATLAB code we would like to get the spots coordinates.

spots = vImarisApplication.GetSurpassSelection();

if vImarisApplication.GetFactory().IsSpots(spots)

pos = spots.GetPositionsXYZ();

end

No appropriate method, property, or field GetPositionsXYZ for

class Imaris.IDataItemPrxHelper.

Notice that even though the function isSpots() returns true (i.e. the selectd object is indeed

5From the IApplication class.

19

4 Writing MATLAB XTensions

an ISpots object), the call spots.GetPositionsXYZ() fails! The class of the returned object
is Imaris.IDataItemPrxHelper, which is the Ice proxy encapsulating the IDataItem object we
selected: IDataItem is the base class of ISpots (see figure 4.3). The IDataItem object does not
have a GetPositionsXYZ() method, since this is implemented in the derived class ISpots. The
correct way to get the positions is through a type cast:

spots = vImarisApplication.GetSurpassSelection();

if vImarisApplication.GetFactory().IsSpots(spots)

spots = vImarisApplication.GetFactory().ToSpots(spots);

pos = spots.GetPositionsXYZ();

end

spots =

1.1454 55.3780 1.6204

1.4394 45.3413 1.2051

11.4817 77.0214 1.9614

...

As we will see, IceImarisConnector takes care of casting objects appropriately.

4.3.4 Row-major vs. column-major order

In computing, row-major order and column-major order describe methods for storing multidi-
mensional arrays in linear memory. The C programming language (and all of its derivatives)
use the row-major order, while MATLAB uses column-major order. Why is this important?
Memory in a computer can actually be visualized as a very long 1-dimensional array of bytes.
An image is a 2-dimensional array of pixels (and even three-dimensional if we consider images
stacks, like the ones acquired on a confocal microscope). How can one store a 2-dimensional
array in the 1-dimensional computer memory? Consider following 2x2 array:[

1 2
3 4

]
In row-major order, the four values are stored as 1 2 3 4. In column-major order, they are

stored as 1 3 2 4. Now, Imaris is written in C++ and stores arrays in row-major order, while
MATLAB uses column-major order. This means that if one transfers the following array: 1 2 3 4

5 6 7 8
9 10 11 12


from Imaris to MATLAB, this is what MATLAB receives:

1 5 9
2 6 10
3 7 11
4 8 12


To get the values in the same spatial organization as in Imaris, the array must be transposed

in MATLAB!

20

4 Writing MATLAB XTensions

4.3.5 Dimensions order

Consider also that coordinates in Imaris as stored quite naturally as
[

x y z
]
, whereas MAT-

LAB considers arrays as matrices, and by definition the first dimension of a matrix is the row
number and the second is the column number. This boils down to mapping the Imaris coor-
dinate

[
x y z

]
to the MATLAB equivalent

[
y x z

]
. For most cases, this reduces to

remembering that the first coordinate of an object position returned by Imaris is x and not y,
but it can become trickier when combining positional information from objects (e.g. spots) and
pixel positions in data arrays obtained from Imaris (see section 4.3.4). IceImarisConnector has
a method getDataVolumeRM() that returns a data volume in row-major order (i.e. each plane
transposed) and that practically swaps the x and y dimensions of the array. Sections 4.5 and 5.8
will hopefully make this point clearer.

4.4 Our first XTension: classify spots by distance

We will now write a simple XTension that classifies Spots by distance from some fiduciary mark,
in our case the center of mass of a surface.

Start Imaris and load the imarisXTCourse.ims file. Change to the Surpass Scene. You should
see something like figure 4.4.

Figure 4.4: The dataset we will be working with.

To make it easier to write and test our XTension, we will run it from MATLAB, instead of
starting it from Imaris. To get everything ready to go, perform the following steps:

• start Imaris

21

4 Writing MATLAB XTensions

• open the ImarisXTCourse.ims file

• select the Vesicles Spots object

• start MATLAB

• in MATLAB, change6 to the folder where you downloaded the XTensions (see 4.1)

• open the XTension with name spotClassifyByDistance.m in the editor, i.e. type:

>�> edit spotClassifyByDistance

• put a breakpoint (i.e. click on the gray gutter on the left, near the line numbers) on the
first code line

• run the function as follows from the MATLAB command prompt:

>�> spotClassifyByDistance(0)

If this does not work (i.e. the Imaris Application ID is not 0), try getting it like this:

>�> vImarisLib = ImarisLib();

>�> server = vImarisLib.GetServer();

>�> id = server.GetObjectID(0);

and then use id:

>�> spotClassifyByDistance(id);

We can now execute our XTension line by line.

4.4.1 The XTension header

The exact same mechanism we saw in section 2 to add selected Fiji plug-ins to the Fiji menu is
used to add MATLAB XTensions to the Image Processing menu. Moreover, XTensions can be
added to the Tools tab of almost any of the Surpass Scene objects. An XTension is added to the
menu by specifying an <Item> contained in a <Menu> and optionally one or more <Submenu>.
The actual function to be executed is specified by the <Command> tag. The string MatlabXT must
preceed the name of the MATLAB .m file (without extension) and the function signature is free
provided the first parameter is %i: the ImarisApplication ID7.

% Classifies the Spots by distance from the center of a surface

%

% The distance limits are specified by the user via input dialogs. The

% classified spots are copied to new Spots objects.

%

% <CustomTools>

6Type help cd if you need help for this.
7Please note that it really must be %i: if you use %s or anything else, it won’t work!

22

4 Writing MATLAB XTensions

% <Menu>

% <Submenu name="ImarisXT course">

% <Item name="Classify spots by distance" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistance(%i)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">

% <Item name="Classify spots by distance" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistance(%i)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

function XTSpotsClosestDistance(aImarisApplicationID)

...

To add the XTension to the Tools tab of the Spots object, one specifies an <Item> contained in a
<SurpassComponent> whose name defines the type of the object it will be assigned to. Table 4.1
lists the Surpass Component names for the various objects.

Surpass Component Name Remarks

Spots bpSpots
Surfaces bpSurfaces

Filaments bpFilaments
Cells bpCells

Groups (folders) bpComponentGroup The Surpass Scene is a bpComponentGroup
Measurement Points bpMeasurementPoints

Clipping Plane bpClippingPlane
Frame bpFrame

Table 4.1: List of <SurpassComponent> names to use in the XTension header.

4.4.2 The XTension code

This is the complete code of our XTension:

file: spotClassifyByDistance.m

23

4 Writing MATLAB XTensions

function spotClassifyByDistance(aImarisApplicationID)

% Classifies the Spots by distance from the center of a surface

%

% The distance limits are specified by the user via input dialogs. The

% classified spots are copied to new Spots objects.

%

% <CustomTools>

% <Menu>

% <Submenu name="ImarisXT course">

% <Item name="Classify spots by distance" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistance(%i)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">

% <Item name="Classify spots by distance" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistance(%i)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

% Set up connection between Imaris and MATLAB

if isa(aImarisApplicationID, 'Imaris.IApplicationPrxHelper')

vImarisApplication = aImarisApplicationID;

else

% connect to Imaris interface

javaaddpath ImarisLib.jar

vImarisLib = ImarisLib;

if ischar(aImarisApplicationID)

aImarisApplicationID = round(str2double(aImarisApplicationID));

end

vImarisApplication = vImarisLib.GetApplication(aImarisApplicationID);

end

% Get the currently selected object in the surpass scene and check that it

% is a Spots object

vSpots = vImarisApplication.GetSurpassSelection();

vSpots = vImarisApplication.GetFactory().ToSpots(vSpots);

if isempty(vSpots)

errordlg('Please select a Spots object!');

return

end

% Get the Surfaces objects and ask the user to pick one if there are more

% than one

surfaces = {}; nSurfaces = 0;

nChildren = vImarisApplication.GetSurpassScene().GetNumberOfChildren();

for i = 0 : (nChildren - 1)

child = vImarisApplication.GetSurpassScene.GetChild(i);

24

4 Writing MATLAB XTensions

if vImarisApplication.GetFactory().IsSurfaces(child)

nSurfaces = nSurfaces + 1;

% We must cast the child to a Surfaces object!

surfaces{nSurfaces} = ...

vImarisApplication.GetFactory().ToSurfaces(child);

end

end

if nSurfaces == 0

errordlg('There are no Surfaces in the scene!');

return

end

if nSurfaces > 1

% Ask the user to pick one surface

vSurface = askUserToPickSurface(surfaces);

if isempty(vSurface)

return

end

else

vSurface = surfaces{ 1 };

end

% Get the center of mass of the Surfaces object

centerOfMass = vSurface.GetCenterOfMass(0);

% Ask the user to specify the distance limits to use

distanceLimits = askUserToSetDistanceLimits();

if isempty(distanceLimits)

return

end

% Get the spot coordinates, radii and time indices

spotValues = vSpots.Get();

coords = spotValues.mPositionsXYZ;

radii = spotValues.mRadii;

timeIndices = spotValues.mIndicesT;

% Calculate all spot distances from the measurement point

D = sqrt(...

(coords(:, 1) - centerOfMass(1)).^2 + ...

(coords(:, 2) - centerOfMass(2)).^2 + ...

(coords(:, 3) - centerOfMass(3)).^2);

% Now classify the spots by distance and create new Spots objects

% containing the spots that fall in current distance bin

distanceLimits = [0 distanceLimits Inf];

for i = 2 : numel(distanceLimits)

indx = find(D >= distanceLimits(i - 1) & D < distanceLimits(i));

if ~isempty(indx)

newSpots = vImarisApplication.GetFactory().CreateSpots();

newSpots.Set(coords(indx, :), timeIndices(indx), radii(indx));

newSpots.SetColorRGBA(uint32(randi(255, [1 3]) * [1; 256; 256^2]));

newSpots.SetName(['Spots ', num2str(distanceLimits(i - 1)), ...

25

4 Writing MATLAB XTensions

' <= D < ', num2str(distanceLimits(i)), ' [', ...

num2str(numel(indx)), ']']);

vImarisApplication.GetSurpassScene().AddChild(newSpots, -1);

end

end

% ==== Helper functions ===

% Ask the user to pick a surface from a list

function vSurface = askUserToPickSurface(surfaces)

nSurfaces = numel(surfaces);

surfaceNames = cell(1, nSurfaces);

for i = 1 : nSurfaces

surfaceNames{i} = char(surfaces{i}.GetName());

end

[s, v] = listdlg(...

'Name', 'Question', ...

'PromptString', ...

'Choose surface from which the distances will be calculated', ...

'SelectionMode', 'single', ...

'ListSize', [400 300], ...

'ListString', surfaceNames);

if v == 0

vSurface = [];

return;

end

vSurface = surfaces{ s };

% Ask the user to set the distance limits a surface from a list

% (we provide reasonable defaults)

function distanceLimits = askUserToSetDistanceLimits()

answer = inputdlg({'Please set distance limits:'}, 'Input', ...

1, {'10, 20, 30, 40, 50'});

if isempty(answer)

return;

end

distanceLimits = str2num(answer{1});

if isempty(distanceLimits)

errordlg('Invalid distance limits!');

distanceLimits = [];

return;

end

distanceLimits = [0 distanceLimits Inf];

4.4.3 The XTension code explained

In this quick analysis of the code from previous section we will concentrate on the lines high-
lighted in red.

The first block of code takes care of setting up the communication between Imaris and MAT-
LAB though Ice. This is meant to work uni-directionally, with Imaris starting MATLAB and
passing its aImarisApplicationID (a small integer value). The code:

26

4 Writing MATLAB XTensions

javaaddpath ImarisLib.jar

vImarisLib = ImarisLib;

works because when MATLAB is started, the current path is set by Imaris and is the folder
where the ImarisLib.jar package is found. Also adding it to the Java path is fine, since
ImarisLib.jar is not in the path at startup and MATLAB will be closed by Imaris at the end of
the XTension. Running one of the bundled XTensions from MATLAB requires us to manually
change the path to the folder where ImarisLib.jar is contained.

aImarisApplicationID can also be an IApplication object proxy (Imaris.IApplicationPrxHelper),
but this is not really used in practice.

In the next block of code, we must explicitly cast the object returned by GetSurpassSelection()

to an ISpots:

vSpots = vImarisApplication.GetSurpassSelection();

vSpots = vImarisApplication.GetFactory().ToSpots(vSpots);

otherwise we will receive an IDataItem instead. Please notice that if nothing is selected in the
Surpass Scene or the selection object is not a spots object, ToSpots() will return [] (empty).

Next, we iterate over all children of the Surpass Scene and collect all ISurfaces objects we
find into a cell array for further use. Again, we have to explicitly cast to ISurfaces.

Finally, we create an ISpots object containing subsets of the spots that fall within the desired
range of distances from the surface center of mass. Empty ISpots objects are created by means
of a Factory, are then populated with all the relevant attributes (positions, radii, time points,
name, color) and then added to the Surpass Scene as a new child. Notice how the color of the
Spots is set:

newSpots.SetColorRGBA(uint32(randi(255, [1 3]) * [1; 256; 256^2]));

The details of how a color is defined in Imaris can be found by typing

>�> help IceImarisConnector/mapRgbaVectorToScalar

at the MATLAB prompt.
Here we only remark that the way colors are set in most of the bundled XTensions (and

reproduced here) omits setting the transparency (or implicitly sets it to zero). This is because of
the issue discussed in section 4.3.2 (see also section 5.7.1).

4.4.4 Exercise

As an exercise, modify the XTension to calculate distances from the Nucleus surface and not
from its center of mass.

27

4 Writing MATLAB XTensions

4.5 Our second XTension: plotting spots on a maximum-intensity
projection

In this second XTension, we will calculate the maximum intensity projection (MIP) along the z
axis for all channels of the ImarisXTCourse.ims dataset8, and then plot the coordinates of all
Spots objects found in the Surpass Scene onto the MIP.

4.5.1 The XTension header

In contrast to the spotClassifyByDistance.m function of section 4.4.2, our second XTen-
sion will take two input parameters (see code listing below). The first input parameter of
our new spotPlotCoordsOnDataSetMIP.m function is the well-known Imaris application ID
(aImarisApplicationID). But here we add a second one, rowMajor. As we discussed in section
4.4, when asking Imaris to return the dataset to MATLAB, it will do it in column-major order
(in MATLAB) thus resulting in a dataset with swapped x and y dimensions. If we were writing
this function for real usage, we would probably just transpose to row-major order to preserve the
same geometry as the original dataset and give the user what he or she intuitively expects. In our
example here, however, we will implement both options for the user to choose. This will allow
us to see how to pass more input parameters to an XTension and also how to swap dimensions in
a dataset. Let’s start by taking a look at the function header.

function spotPlotCoordsOnDataSetMIP(aImarisApplicationID, rowMajor)

% Plots the z-projected Spots coordinates on the dataset MIPs

%

% To keep the code short, the function plots all found Spots objects.

% No questions asked.

%

% <CustomTools>

% <Menu>

% <Submenu name="ImarisXT course">

% <Item name="Plot spot coordinates on dataset MIP (column-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 0)</Command>

% </Item>

% <Item name="Plot spot coordinates on dataset MIP (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 1)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">
% <Item name="Plot spot coordinates on dataset MIP (column-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 0)</Command>

% </Item>
% <Item name="Plot spot coordinates on dataset MIP (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 1)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

8However, we will only consider the first time point.

28

4 Writing MATLAB XTensions

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

4.5.2 The XTension code

This is the complete code of our XTension:

file: spotPlotCoordsOnDataSetMIP.m

function spotPlotCoordsOnDataSetMIP(aImarisApplicationID, rowMajor)

% Plots the z-projected Spots coordinates on the dataset MIPs

%

% To keep the code short, the function plots all found Spots objects.

% No questions asked.

%

% <CustomTools>

% <Menu>

% <Submenu name="ImarisXT course">
% <Item name="Plot spot coordinates on dataset MIP (column-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 0)</Command>

% </Item>
% <Item name="Plot spot coordinates on dataset MIP (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 1)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">

% <Item name="Plot spot coordinates on dataset MIP (column-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 0)</Command>

% </Item>
% <Item name="Plot spot coordinates on dataset MIP (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIP(%i, 1)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

% Set up connection between Imaris and MATLAB

if isa(aImarisApplicationID, 'Imaris.IApplicationPrxHelper')

vImarisApplication = aImarisApplicationID;

else

% connect to Imaris interface

javaaddpath ImarisLib.jar

vImarisLib = ImarisLib;

if ischar(aImarisApplicationID)

aImarisApplicationID = round(str2double(aImarisApplicationID));

end

vImarisApplication = vImarisLib.GetApplication(aImarisApplicationID);

end

29

4 Writing MATLAB XTensions

% Set column-major by default

if nargin == 1

rowMajor = 0;

end

if rowMajor ~= 0 && rowMajor ~= 1

error(rowMajor must be wither 0 or 1.');

end

% Get the dataset

iDataSet = vImarisApplication.GetDataSet();

if isempty(iDataSet)

errordlg('Please load a dataset!');

return

end

% Find all Spots objects

spots = {}; nSpots = 0;

nChildren = vImarisApplication.GetSurpassScene().GetNumberOfChildren();

for i = 0 : (nChildren - 1)

child = vImarisApplication.GetSurpassScene.GetChild(i);

if vImarisApplication.GetFactory().IsSpots(child)

nSpots = nSpots + 1;

% We must cast the child to a Spots object!

spots{nSpots} = ...

vImarisApplication.GetFactory().ToSpots(child);

end

end

if nSpots == 0

errordlg('There are no Spots in the scene!');

return

end

% Get the dataset class

switch char(iDataSet.GetType())

case 'eTypeUInt8', datatype = 'uint8';

case 'eTypeUInt16', datatype = 'uint16';

case 'eTypeFloat', datatype = 'single';

otherwise, error('Bad value for iDataSet.GetType()');

end

% To simplify, we consider at most 3 channels (and we create an RGB image

% for display)

nChannels = iDataSet.GetSizeC();

if nChannels > 3

nChannels = 3;

end

% Size of the output image

if rowMajor == 0

sizeX = iDataSet.GetSizeY();

sizeY = iDataSet.GetSizeX();

else

30

4 Writing MATLAB XTensions

sizeX = iDataSet.GetSizeX();

sizeY = iDataSet.GetSizeY();

end

% Prepare the image (either grayscale or RGB)

if nChannels == 1

MIP = zeros([sizeY, sizeX, 1], datatype);

else

MIP = zeros([sizeY, sizeX, 3], datatype);

end

% Get the stack for all channels (and timepoint 0).

for i = 1 : nChannels

% Allocate memory

stack = zeros([iDataSet.GetSizeX(), iDataSet.GetSizeY(), ...

iDataSet.GetSizeZ()], datatype);

% Get the pixel data

switch char(iDataSet.GetType())

case 'eTypeUInt8',

arr = iDataSet.GetDataVolumeAs1DArrayBytes(i - 1, 0);

stack(:) = typecast(arr, 'uint8');

case 'eTypeUInt16',

arr = iDataSet.GetDataVolumeAs1DArrayShorts(i - 1, 0);

stack(:) = typecast(arr, 'uint16');

case 'eTypeFloat',

stack(:) = iDataSet.GetDataVolumeAs1DArrayFloats(i - 1, 0);

otherwise,

error('Bad value for type');

end

% Project and store

if rowMajor == 0

MIP(:, :, i) = max(stack, [], 3);

else

MIP(:, :, i) = (max(stack, [], 3))'; % Transposed

end

end

% Display the MIP

figure; imshow(MIP, []);

hold on;

% Since we project along the z axis, we can ignore the z coordinates!

%

% Spot coordinates are stored in dataset units (usually µm), therefore we

% need to map them to pixel coordinates to be able to plot them on the MIP.

% For this we need the dataset voxel sizes.

% Voxel size X

voxelSizesX = (iDataSet.GetExtendMaxX() - iDataSet.GetExtendMinX()) / ...

iDataSet.GetSizeX();

31

4 Writing MATLAB XTensions

% Voxel size Y

voxelSizesY = (iDataSet.GetExtendMaxY() - iDataSet.GetExtendMinY()) / ...

iDataSet.GetSizeY();

% Prepare some plot colors (that match our example dataset)

colors = [1 0 0; 0 1 0; 0 0 1];

for i = 1 : nSpots

% Coords in dataset units

coords = spots{i}.GetPositionsXYZ();

% Voxels positions X

posX = (coords(:, 1) - iDataSet.GetExtendMinX()) ./ voxelSizesX + 0.5;

% Voxels positions Y

posY = (coords(:, 2) - iDataSet.GetExtendMinY()) ./ voxelSizesY + 0.5;

% Plot

if rowMajor == 0

plot(posY, posX, '*', 'MarkerSize', 8, 'Color', colors(i, :));

else

plot(posX, posY, '*', 'MarkerSize', 8, 'Color', colors(i, :));

end

end

4.5.3 The XTension code explained

The initial part is mostly the same as in the first XTension and will not be discussed here.
The first interesting code block asks the IDataset object to reveal the type of the pixel data:

iDataSet.GetType()

which is one of eTypeUInt8, eTypeUInt16 or eTypeFloat in Imaris with the corresponding
uint8, uint16 and single in MATLAB. We need to know the datatype of the dataset to allocate
memory and call the correct Java methods to obtain the arrays.

Depending on whether we want the data in column- or row-major order, the MATLAB ma-
trix that will contain the MIP will be either [(iDataSet).GetSizeY() by GetSizeX()] or
[GetSizeX() by GetSizeY()].

Since our ultimate goal is to calculate and display a MIP with the right orientation, it does not
matter how we create it: in case we want it in row-major order, we just transpose the MIP after
we have created it. As discussed in section 4.3.2.1, we need to typecast the byte stream that we
get from Imaris to the right MATLAB data type. For performance reasons, and also because the
typecast function in MATLAB only works on 1-dimensional arrays, we first allocate memory
in the right shape:

stack = zeros([iDataSet.GetSizeX(), iDataSet.GetSizeY(), ...

iDataSet.GetSizeZ()], datatype);

32

4 Writing MATLAB XTensions

and we then fill it with a typecast of the obtained 1-dimensional array:

stack(:) = typecast(arr, 'uint8');

This is much faster than getting the 3D volume from Imaris already in the right shape, which is
also more difficult to typecast properly.

ImarisXT does not offer any API to get the voxel size of the loaded dataset: it must be calcu-
lated from the dataset extends and the number of pixels in each dimension. This is the example
for the voxel size in x direction:

% Voxel size X

voxelSizesX = (iDataSet.GetExtendMaxX() - iDataSet.GetExtendMinX()) / ...

iDataSet.GetSizeX();

Extends, coordinates, voxel sizes, ... are all given in real-world units, most often µm. Sometimes
it is useful to know on which voxel a particular point in space falls. This can be calculated as
follows:

% Voxels positions X

posX = (coords(:, 1) - iDataSet.GetExtendMinX()) ./ voxelSizesX + 0.5;

The 0.5 added to the position in pixels is due to the fact that an integer real wold position falls
between two points in the voxel grid. To visualize this, try to picture the following: a confocal
stack with iDataSet.GetExtendMinZ = 0 (µm) and a distance of 1 µm between planes has a z
coordinate of 0.5 µm. If you look at the dataset as a series of images stacked in z direction, the
plane at z = 0.5 um is the first image in the voxel grid.

Finally, depending on whether we transposed the MIP or not, we have to plot the spots ac-
cordingly; either:

plot(posY, posX, ...)

or

plot(posX, posY, ...)

33

5 Writing Imaris XTensions with
IceImarisConnector

5.1 IceImarisConnector

IceImarisConnector is a simple commodity class written in MATLAB that eases communication
between Imaris and MATLAB using the ImarisXT interface.

It wraps itself around the Ice-based Imaris Application object and provides a series of methods
to facilitate several operations while ensuring direct (read-only) access to the Ice object.

5.2 Where to find

The latest stable version of IceImarisConnector can be downloaded from the project web site1.
The git repository can be cloned from github.com2.

5.3 How to install

Download or clone IceImarisConnector to a folder of choice. There are several ways to use
IceImarisConnector: here we will continue with the simple approach we have used so far. Copy
the @IceImarisConnector subfolder to the same folder that contains the XTensions of this course
and that you added to the Imaris in section 4.1. This way, Imaris will find it when running
XTensions.

To run IceImarisConnector from MATLAB, we have to add it to the MATLAB path as well.
In MATLAB, choose Set Path from the File menu, click on the Add folder button and choose the
same directory (see figure 5.1).

To run MATLAB from IceImarisConnector, the latter must know where the former is. If
Imaris is installed to the default location, IceImarisConnector should manage to find it automati-
cally. In the case that several Imaris versions are installed, IceImarisConnector will pick the one
with highest version number. If Imaris is installed in a non-standard location, or if one wants to
use a version which is not the latest, the desired path can be defined by setting the environment
variable IMARISPATH.

1http://www.scs2.net/next/index.php?id=110
2https://github.com/aarpon/IceImarisConnector

34

5 Writing Imaris XTensions with IceImarisConnector

Figure 5.1: Add the IceImarisConnector folder to path.

35

5 Writing Imaris XTensions with IceImarisConnector

5.4 Documentation

The complete API documentation can be found online3. Alternatively, every function is fully
documented for usage in MATLAB. To get help for IceImarisConnector in MATLAB, type help
IceImarisConnector at the MATLAB prompt:

>�> help IceImarisConnector

IceImarisConnector constructor

DESCRIPTION

IceImarisConnector is a simple commodity class that eases communication

between Imaris and MATLAB using the ImarisXT interface.

SYNOPSIS

conn = IceImarisConnector(vImarisApplication, indexingStart)

INPUT

vImarisApplication : (optional) if omitted (or set to []), an

IceImarisConnector object is created that is

not connected to any Imaris instance.

Imaris can then be started (and connected) using

the startImaris() method, i.e.

conn.startImaris()

Alternatively, vImarisApplication can be:

- an Imaris Application ID as provided by Imaris

- an IceImarisConnector reference

- an Imaris Application ICE object.

indexingStart : (optional, default is 0) either 0 or 1, depending

on whether you prefer to index arrays in

IceImarisConnector starting at 0 or 1.

All indexing in ICE starts at 0; in contrast,

MATLAB indexing starts at 1.

To keep consistentcy, indexing in IceImarisConnector

is also 0-based (i.e. indexingStart defaults to 0).

This means that to get the data volume for the

first channel and first time point of the dataset

you will use conn.GetDataVolume(0, 0).

It you are come confortable with 1-based indexing,

i.e. you prefer using conn.GetDataVolume(1, 1),

you can set indexingStart to 1.

3http://www.scs2.net/index.php?id=113

36

5 Writing Imaris XTensions with IceImarisConnector

Whatever you choose, be consistent!

REMARK

The Imaris Application ICE object is stored in the read-only property

mImarisApplication. The mImarisApplication property gives access to

the entire Imaris ICE methods. Example:

conn.mImarisApplication.GetSurpassSelection()

returns the currently selected object in the Imaris surpass scene.

OUTPUT

conn : an object of class IceImarisConnector

Help for any of the IceImarisConnector methods can be obtained like this:

> help IceImarisConnector/autocast

IceImarisConnector: autocast (public method)

DESCRIPTION

This method casts IDataItems to their derived types

SYNOPSIS

derivedType = conn.autocast(IDataItem)

INPUT

IDataItem: an Imaris::IDataItem object

OUTPUT

derivedType : one of the Imaris::IDataItem subclasses:

- Imaris::IClippingPlane

- Imaris::IDataContainer

- Imaris::IFilaments

- Imaris::IFrame

- Imaris::IDataSet

- Imaris::IICells

- Imaris::ILightSource

- Imaris::IMeasurementPoints

- Imaris::ISpots

- Imaris::ISurfaces

- Imaris::IVolume

- Imaris::ISurpassCamera

- Imaris::IImageProcessing

- Imaris::IFactory

37

5 Writing Imaris XTensions with IceImarisConnector

5.5 How to use IceImarisConnector from Imaris

In most cases, the instantiation of an IceImarisConnector object is the first action in an XT
function4:

function myFancyXTension(aImarisApplicationID)

% myFancyXTension is the next great XT function

% ...

% Instantiate an IceImarisConnector object

conn = IceImarisConnector(aImarisApplicationID);

% Rest of the code...

Simply put, the call to the IceImarisConnector() constructor replaces the following code (which
we saw in our two example XTensions):

if isa(aImarisApplicationID, 'Imaris.IApplicationPrxHelper')

vImarisApplication = aImarisApplicationID;

else

% connect to Imaris interface

javaaddpath ImarisLib.jar

vImarisLib = ImarisLib;

if ischar(aImarisApplicationID)

aImarisApplicationID = round(str2double(aImarisApplicationID));

end

vImarisApplication = vImarisLib.GetApplication(aImarisApplicationID);

end

In reality, it does quite a bit more, since it takes care of adding ImarisLib.jar to the path only
once, it makes sure the Ice server is running before a connection is attempted, and more5.

The aImarisApplicationID input parameter is the well-know ID that Imaris passes to the XTen-
sion when it is launched. IceImarisConnector uses it to initialize the connection to Imaris. The
conn object returned by the constructor is our powerful IceImarisConnector object, which gives
us access to the Imaris Application object (what we called vImarisApplication in our first
XTensions) and adds several additional functionalities via the IceImarisConnector API6. See the
next section for more details.

5.6 How to use IceImarisConnector from MATLAB

Using IceImarisConnector from MATLAB allows for a better experience, especially while writ-
ing and debugging new XTensions, since MATLAB can be used with full functionality. More-
over, once the connection between MATLAB and Imaris is established, it is maintained until
Imaris is closed by the user (or via IceImarisConnector), meaning that neither MATLAB nor
Imaris must be restarted before an XTension can be re-run.

An IceImarisConnector object can be instantiated without parameters:
4Not considering parameter checking.
5Take a look at the code: it’s open source!
6http://www.scs2.net/next/index.php?id=113

38

5 Writing Imaris XTensions with IceImarisConnector

>�> conn = IceImarisConnector()

IceImarisConnector: not connected to an Imaris instance yet.

In case you did not set the IMARISPATH environment variable, you can check what IceImarisCon-
nector found by using the info() method:

>�> conn.info()
IceImarisConnector version 0.3.3 using:
- Imaris path: /Applications/Imaris 7.7.1.app
- Imaris executable: /Applications/Imaris 7.7.1.app/Contents/MacOS/Imaris
- ImarisServer executable: /Applications/Imaris 7.7.1.app/Contents/MacOS/ImarisServerIce
- ImarisLib.jar archive: /Applications/Imaris 7.7.1.app/Contents/SharedSupport/XT/matlab/ImarisLib.jar

Now the IceImarisConnector object can be used to start an Imaris instance and connect to it.

>�> conn.startImaris();

MATLAB and Imaris are now connected through the IceImarisConnector object. The Imaris
Application Ice object is a read-only property (member) of the class and can be accessed with
the usual dot notation:

>�> conn.mImarisApplication

ans =

67093A5B-72AD-4206-A6B8-D51CDD078634 -t:tcp -h xxx.xxx.xxx.xxx -p 50183

If an Imaris application is already running, one can link it to IceImarisConnector by passing the
ID 0 to the IceImarisConnector constructor7:

>�> conn = IceImarisConnector(0)

IceImarisConnector: connected to Imaris.

Importantly, the IceImarisConnector constructor can also take a reference to an IceImarisCon-
nector object as a parameter, so that our fancy XTension from section 5.5 can be called also as
follows:

>�> myFancyXTension(conn);

since the conn object will be passed on to the IceImarisConnector constructor at the beginning
ot the XTension. If the conn object is storing an active connection, it will be re-used.

5.7 Our first XTension revised: classify spots by distance using
IceImarisConnector

This is the XTension from section 4.4.2 rewritten using IceImarisConnector:

7See also section 4.4.

39

5 Writing Imaris XTensions with IceImarisConnector

file: spotClassifyByDistanceIIC.m

function spotClassifyByDistanceIIC(aImarisApplicationID)

% Classifies the Spots by distance from the center of a surface using IceImarisConnector

%

% The distance limits are specified by the user via input dialogs. The

% classified spots are copied to new Spots objects.

%

% <CustomTools>

% <Menu>

% <Submenu name="ImarisXT course">

% <Item name="Classify spots by distance using IIC" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistanceIIC(%i)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">

% <Item name="Classify spots by distance using IIC" icon="Matlab">

% <Command>MatlabXT::spotClassifyByDistanceIIC(%i)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

% Set up connection between Imaris and MATLAB

conn = IceImarisConnector(aImarisApplicationID);

% Get the currently selected object in the surpass scene

vSpots = conn.getSurpassSelection();

if isempty(vSpots)

errordlg('Please select a Spots object!');

return

end

% Get the Surfaces objects

surfaces = conn.getAllSurpassChildren(0, 'Surfaces');

nSurfaces = numel(surfaces);

if nSurfaces == 0

errordlg('There are no Surfaces in the scene!');

return

end

if nSurfaces > 1

% Ask the user to pick one surface

vSurface = askUserToPickSurface(surfaces);

if isempty(vSurface)

return

end

else

vSurface = surfaces{ 1 };

end

40

5 Writing Imaris XTensions with IceImarisConnector

% Get the center of mass of the Surfaces object

centerOfMass = vSurface.GetCenterOfMass(0);

% Ask the user to specify the distance limits to use

distanceLimits = askUserToSetDistanceLimits();

if isempty(distanceLimits)

return

end

% Get the spot coordinates, radii and time indices

spotValues = vSpots.Get();

coords = spotValues.mPositionsXYZ;

radii = spotValues.mRadii;

timeIndices = spotValues.mIndicesT;

% Calculate all spot distances from the measurement point

D = sqrt(...

(coords(:, 1) - centerOfMass(1)).^2 + ...

(coords(:, 2) - centerOfMass(2)).^2 + ...

(coords(:, 3) - centerOfMass(3)).^2);

% Now classify the spots by distance and create new Spots objects

% containing the spots that fall in current distance bin

for i = 2 : numel(distanceLimits)

indx = find(D >= distanceLimits(i - 1) & D < distanceLimits(i));

if ~isempty(indx)

name = ['Spots ', num2str(distanceLimits(i - 1)), ...

' <= D < ', num2str(distanceLimits(i)), ' [', ...

num2str(numel(indx)), ']'];

conn.createAndSetSpots(coords(indx, :), timeIndices(indx), ...

radii(indx), name, [rand(1, 3) 0]);

end

end

% ==== Helper functions ===

... (identical to those in the code from section 4.4.2)

5.7.1 The XTension code explained

The XTension obviously delivers the same result as the one in section 4.4 but does it in quite
fewer lines.

The responibility for setting up (and maintaining) the connection between Imaris and MAT-
LAB is taken by the IceImarisConnector constructor, which returns an IceImarisConnector ob-
ject conn ready for us to use.

The call:

vSpots = conn.getSurpassSelection();

returns a ISpots object already casted to the derived class (see section 4.3.3).

surfaces = conn.getAllSurpassChildren(0, 'Surfaces');

41

5 Writing Imaris XTensions with IceImarisConnector

returns all children of the Surpass Scene that are surfaces already casted to the correct class
ISurfaces.

All the steps required to create and add ISpots objects to the Surpass scene are encapsulated
in the call:

conn.createAndSetSpots(coords(indx, :), timeIndices(indx), ...

radii(indx), name, [rand(1, 3) 0]);

Please notice that the last input parameter of createAndSetSpots()8 is the RGBA color of
the spots, which is an 1-by-4 vector containing the R, G, B, and A values (between 0 and 1)
that represent the Red, Green, and Blue color components and the transparency value of the
ISpots object. Behind the scenes, createAndSetSpots() calls mapRgbaVectorToScalar()
that takes care of converting the RGBA vector into the unsigned 32-bit integer that Imaris uses
to set the color and transparency of the ISpots object working around the signed-integer issue
we discussed in section 4.3.29.

5.8 Our second XTension revised: plotting spots on a
maximum-intensity projection using IceImarisConnector

This is the XTension from section 4.5.2 rewritten using IceImarisConnector:

file: spotPlotCoordsOnDataSetMIPIIC.m

function spotPlotCoordsOnDataSetMIPIIC(aImarisApplicationID, rowMajor)

% Plots the z-projected Spots coordinates on the dataset MIPs using IceImarisConnector

%

% To keep the code short, the function plots all found Spots objects.

% No questions asked.

%

% <CustomTools>

% <Menu>

% <Submenu name="ImarisXT course">
% <Item name="Plot spot coordinates on dataset MIP using IIC (column-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIPIIC(%i, 0)</Command>

% </Item>

% <Item name="Plot spot coordinates on dataset MIP using IIC (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIPIIC(%i, 1)</Command>

% </Item>

% </Submenu>

% </Menu>

% <SurpassTab>

% <SurpassComponent name="bpSpots">

% <Item name="Plot spot coordinates on dataset MIP using IIC (column-major)" icon="Matlab">

8The full signature of createAndSetSpots is: createAndSetSpots(coords, timeIndices, radii, name,

color).
9Interestingly, the problem occurs only when trying to set a transparency value different than zero (the reason why

is explained in the help of IceImarisConnector/mapRgbaVectorToScalar). Indeed, none of the bundled
Imaris XTensions ever changes the transparency.

42

5 Writing Imaris XTensions with IceImarisConnector

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIPIIC(%i, 0)</Command>

% </Item>

% <Item name="Plot spot coordinates on dataset MIP using IIC (row-major)" icon="Matlab">

% <Command>MatlabXT::spotPlotCoordsOnDataSetMIPIIC(%i, 1)</Command>

% </Item>

% </SurpassComponent>

% </SurpassTab>

% </CustomTools>

%

% Copyright (c) 2012, Aaron Ponti

% Set up connection between Imaris and MATLAB

conn = IceImarisConnector(aImarisApplicationID);

% Set column-major by default

if nargin == 1

rowMajor = 0;

end

if rowMajor ~= 0 && rowMajor ~= 1

error(rowMajor must be wither 0 or 1.');

end

% Get the dataset sizes := [sizeX sizeY sizeZ sizeC sizeT]

[sizeX sizeY sizeZ sizeC sizeT] = conn.getSizes();

% Get the dataset

if sizeX == 0

errordlg('Please load a dataset!');

return

end

% Find all Spots objects

spots = conn.getAllSurpassChildren(1, 'Spots');

nSpots = numel(spots);

if nSpots == 0

errordlg('There are no Spots in the scene!');

return

end

% Get the datatype

datatype = conn.getMatlabDatatype();

% Our display will be either grayscale (for one channel), or RGB, for any

% other number of channels

if sizeC == 1

nChannels = 1;

else

nChannels = 3;

end

% Prepare the image with the correct size (either grayscale or RGB)

if rowMajor == 0

MIP = zeros([sizeX, sizeY, nChannels], datatype);

else

MIP = zeros([sizeY, sizeX, nChannels], datatype);

43

5 Writing Imaris XTensions with IceImarisConnector

end

% Get the stack for all channels (and timepoint 0).

for i = 1 : sizeC

if i > nChannels

break;

end

% Get the stack

if rowMajor == 0

stack = conn.getDataVolume(i - 1, 0);

else

stack = conn.getDataVolumeRM(i - 1, 0);

end

% Project and store

MIP(:, :, i) = max(stack, [], 3);

end

% Display the MIP

figure; imshow(MIP, []);

hold on;

% Since we project along the z axis, we can ignore the z coordinates!

%

% Spot coordinates are stored in dataset units (usually um), therefore we

% need to map them to pixel coordinates to be able to plot them on the MIP.

% Prepare some plot colors (that match our example dataset)

colors = [1 0 0; 0 1 0; 0 0 1];

for i = 1 : nSpots

% Coords in dataset units

coords = spots{i}.GetPositionsXYZ();

% Map the coordinates to pixels

[posX, posY] = conn.mapPositionsUnitsToVoxels(coords);

% Plot

if rowMajor == 0

plot(posY, posX, '*', 'MarkerSize', 8, 'Color', colors(i, :));

else

plot(posX, posY, '*', 'MarkerSize', 8, 'Color', colors(i, :));

end

end

5.8.1 The XTension code explained

IceImarisConnector provides a few commodity function to get sizes (getSizes()), extends
(getExtends()), voxel sizes (getVoxelSizes()), type of the Imaris dataset mapped to the MAT-
LAB type (getMatlabDatatype()) and also mapping functions to convert from real world units

44

5 Writing Imaris XTensions with IceImarisConnector

to voxel (mapPositionsUnitsToVoxels()) and from voxels to units (mapPositionsVoxelsToUnits()).
Getting data volumes from Imaris both in column-major and row-major order is straightfor-

ward as well: getDataVolume() returns the 3-Dimensional dataset for a given channel and time
point in column-major order, whereas getDataVolumeRM() returns it in row-major order.

5.8.2 Exercise

Match the colors of the plotted MIP channels and spots to those in the Imaris Surpass Scene.

45

	Introduction
	Bundled MATLAB XTensions
	Fiji methods and plug-ins
	Bundled python XTensions
	Setup
	Application paths
	XTension folders

	Interfacing with Fiji
	An example python XTension
	Writing MATLAB XTensions
	Getting the course code
	Documentation
	ImarisXT pitfalls
	MATLAB closes when the XTension finishes
	Signed vs. unsigned integers
	Getting image data from Imaris to MATLAB
	Getting image data from MATLAB to Imaris
	Exercise (for later)

	Objects (``proxies'') are returned as references to their base class
	Row-major vs. column-major order
	Dimensions order

	Our first XTension: classify spots by distance
	The XTension header
	The XTension code
	The XTension code explained
	Exercise

	Our second XTension: plotting spots on a maximum-intensity projection
	The XTension header
	The XTension code
	The XTension code explained

	Writing Imaris XTensions with IceImarisConnector
	IceImarisConnector
	Where to find
	How to install
	Documentation
	How to use IceImarisConnector from Imaris
	How to use IceImarisConnector from MATLAB
	Our first XTension revised: classify spots by distance using IceImarisConnector
	The XTension code explained

	Our second XTension revised: plotting spots on a maximum-intensity projection using IceImarisConnector
	The XTension code explained
	Exercise

